Skip to main content
Log in

Towards reconstructing the dipteran demise of an ancient essential gene: E3 ubiquitin ligase Murine double minute

  • Original Article
  • Published:
Development Genes and Evolution Aims and scope Submit manuscript

Abstract

Genome studies have uncovered many examples of essential gene loss, raising the question of how ancient genes transition from essentiality to dispensability. We explored this process for the deeply conserved E3 ubiquitin ligase Murine double minute (Mdm), which is lacking in Drosophila despite the conservation of its main regulatory target, the cellular stress response gene p53. Conducting gene expression and knockdown experiments in the red flour beetle Tribolium castaneum, we found evidence that Mdm has remained essential in insects where it is present. Using bioinformatics approaches, we confirm the absence of the Mdm gene family in Drosophila, mapping its loss to the stem lineage of schizophoran Diptera and Pipunculidae (big-headed flies), about 95–85 million years ago. Intriguingly, this gene loss event was preceded by the de novo origin of the gene Companion of reaper (Corp), a novel p53 regulatory factor that is characterized by functional similarities to vertebrate Mdm2 despite lacking E3 ubiquitin ligase protein domains. Speaking against a 1:1 compensatory gene gain/loss scenario, however, we found that hoverflies (Syrphidae) and pointed-wing flies (Lonchopteridae) possess both Mdm and Corp. This implies that the two p53 regulators have been coexisting for ~ 150 million years in select dipteran clades and for at least 50 million years in the lineage to Schizophora and Pipunculidae. Given these extensive time spans of Mdm/Corp coexistence, we speculate that the loss of Mdm in the lineage to Drosophila involved further acquisitions of compensatory gene activities besides the emergence of Corp. Combined with the previously noted reduction of an ancestral P53 contact domain in the Mdm homologs of crustaceans and insects, we conclude that the loss of the ancient Mdm gene family in flies was the outcome of incremental functional regression over long macroevolutionary time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Åberg E, Saccoccia F, Grabherr M, Ore WYJ, Jemth P, Hultqvist G (2017) Evolution of the p53-MDM2 pathway. BMC Evol Biol 17:177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aboobaker A, Blaxter M (2010) The nematode story: Hox gene loss and rapid evolution. Adv Exp Med Biol 689:101–110

    Article  CAS  PubMed  Google Scholar 

  • Akdemir F, Christich A, Sogame N et al (2007) p53 directs focused genomic responses in Drosophila. Oncogene 26:5184–5193

    Article  CAS  PubMed  Google Scholar 

  • Albalat R, Cañestro C (2016) Evolution by gene loss. Nat Rev Genet 17:379–391

    Article  CAS  PubMed  Google Scholar 

  • Allton K, Jain AK, Herz H-M, Tsai WW, Jung SY, Qin J, Bergmann A, Johnson RL, Barton MC (2009) Trim24 targets endogenous p53 for degradation. Proc Natl Acad Sci U S A 106:11612–11616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Anstead CA, Batterham P, Korhonen PK et al (2016) A blow to the fly - Lucilia cuprina draft genome and transcriptome to support advances in biology and biotechnology. Biotechnol Adv 34:605–620

    Article  CAS  PubMed  Google Scholar 

  • Arva NC, Gopen TR, Talbott KE, Campbell LE, Chicas A, White DE, Bond GL, Levine AJ, Bargonetti J (2005) A chromatin-associated and transcriptionally inactive p53-Mdm2 complex occurs in Mdm2 SNP309 homozygous cells. J Biol Chem 280:26776–26787

  • Bálint E, Bates S, Vousden KH (1999) Mdm2 binds p73α without targeting degradation. Oncogene 18:3923–3929

    Article  PubMed  Google Scholar 

  • Bang S, Kaur S, Kurokawa M (2020) Regulation of the p53 family proteins by the ubiquitin proteasomal pathway. Int J Mol Sci 21:261–288

    Article  CAS  Google Scholar 

  • Bartas M, Brázda V, Červeň J, Pečinka P (2020) Characterization of p53 family homologs in evolutionary remote branches of Holozoa. Int J Mol Sci 21:6

    Article  CAS  Google Scholar 

  • Beckstead R, Ortiz JA, Sanchez C, Prokopenko SN, Chambon P, Losson R, Bellen HJ (2001) Bonus, a Drosophila homolog of TIF1 proteins, interacts with nuclear receptors and can inhibit βFTZ-F1-dependent transcription. Mol Cell 7:753–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belyi VA, Levine AJ (2009) One billion years of p53/p63/p73 evolution. Proc Natl Acad Sci U S A 106:17609–17610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biscotti MA, Barucca M, Carducci F, Forconi M, Canapa A (2019) The p53 gene family in vertebrates: evolutionary considerations. J Exp Zool B Mol Dev Evol 332:171–178

    Article  PubMed  Google Scholar 

  • Bouska A, Eischen CM (2009) Murine double minute 2: p53-independent roads lead to genome instability or death. Trends Biochem Sci 34:279–286

    Article  CAS  PubMed  Google Scholar 

  • Breugelmans B, Ansell BRE, Young ND et al (2015) Flatworms have lost the right open reading frame kinase 3 gene during evolution. Sci Rep 5:9417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodsky MH, Nordstrom W, Tsang G et al (2000) Drosophila p53 binds a damage response element at the reaper locus. Cell 101:103–113

    Article  CAS  PubMed  Google Scholar 

  • Brodsky MH, Weinert BT, Tsang G et al (2004) Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24:1219–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bucher G, Scholten J, Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12:R85–R86

    Article  CAS  PubMed  Google Scholar 

  • Callaghan MJ, Russell AJ, Woollatt E et al (1998) Identification of a human HECT family protein with homology to the Drosophila tumor suppressor gene hyperplastic discs. Oncogene 17:3479–3491

  • Caravas J, Friedrich M (2013) Shaking the Diptera tree of life: performance analysis of nuclear and mitochondrial sequence data partitions. Syst Entomol 38:93–103

    Article  Google Scholar 

  • Chakraborty R, Li Y, Zhou L, Golic KG (2015) Corp regulates P53 in Drosophila melanogaster via a negative feedback loop. PLoS Genet 11:e1005400

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen J, Marechal V, Levine AJ (1993) Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol 13:4107–4114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Wei H-M, Lv W-W et al (2011) E2 ligase dRad6 regulates DMP53 turnover in Drosophila. J Biol Chem 286:9020–9030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z-X, Sturgill D, Qu J et al (2014) Comparative validation of the D. melanogaster modENCODE transcriptome annotation. Genome Res 24:1209–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtois S, Verhaegh G, North S, Luciani MG, Lassus P, Hibner U, Oren M, Hainaut P (2002) DeltaN-p53, a natural isoform of p53 lacking the first transactivation domain, counteracts growth suppression by wild-type p53. Oncogene 21:6722–6728

    Article  CAS  PubMed  Google Scholar 

  • Coutandin D, Ou HD, Löhr F, Dötsch V (2010) Tracing the protectors path from the germ line to the genome. Proc Natl Acad Sci U S A 107:15318–15325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derry WB, Bierings R, van Iersel M et al (2007) Regulation of developmental rate and germ cell proliferation in Caenorhabditis elegans by the p53 gene network. Cell Death Differ 14:662–670

    Article  CAS  PubMed  Google Scholar 

  • Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P, O' Rourke K, Koeppen H, Dixit VM (2004) The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429:86–92

    Article  CAS  PubMed  Google Scholar 

  • dos Santos HG, Nunez-Castilla J, Siltberg-Liberles J (2016) Functional diversification after gene duplication: Paralog specific regions of structural disorder and phosphorylation in p53, p63, and p73. PLoS One 11:e0151961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erives AJ (2015) Genes conserved in bilaterians but jointly lost with Myc during nematode evolution are enriched in cell proliferation and cell migration functions. Dev Genes Evol 225:259–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Fakharzadeh SS, Trusko SP, George DL (1991) Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J 10:1565–1569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraiuolo M, Di Agostino S, Blandino G, Strano S (2016) Oncogenic intra-p53 family member interactions in human cancers. Front Oncol 6:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  PubMed  Google Scholar 

  • Folberg-Blum A, Sapir A, Shilo B-Z, Oren M (2002) Overexpression of mouse Mdm2 induces developmental phenotypes in Drosophila. Oncogene 21:2413–2417

    Article  CAS  PubMed  Google Scholar 

  • Guruharsha KG, Rual J-F, Zhai B et al (2011) A protein complex network of Drosophila melanogaster. Cell 147:690–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn MW (2009) Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 100:605–617

    Article  CAS  PubMed  Google Scholar 

  • Harris SL, Levine AJ (2005) The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908

    Article  CAS  PubMed  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M (1997) Mdm2 promotes the rapid degradation of p53. Nature 387:296–299

    Article  CAS  PubMed  Google Scholar 

  • Hedrick PW (2011) Population genetics of malaria resistance in humans. Heredity 107:283–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herndon N, Shelton J, Gerischer L et al (2020) Enhanced genome assembly and a new official gene set for Tribolium castaneum. BMC Genomics 21:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsh AE, Fraser HB (2001) Protein dispensability and rate of evolution. Nature 411:1046–1049

    Article  CAS  PubMed  Google Scholar 

  • Hochstrasser M (1996) Ubiquitin-dependent protein degradation. Annu Rev Genet 30:405–439

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Feng Z, Levine AJ (2012) The regulation of multiple p53 stress responses is mediated through MDM2. Genes Cancer 3:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang L, Yan Z, Liao X, Li Y, Yang J, Wang ZG, Zuo Y, Kawai H, Shadfan M, Ganapathy S, Yuan ZM (2011) The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. Proc Natl Acad Sci U S A 108:12001–12006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingaramo MC, Sánchez JA, Dekanty A (2018) Regulation and function of p53: A perspective from Drosophila studies. Mech Dev 154:82–90

    Article  CAS  PubMed  Google Scholar 

  • Innan H, Kondrashov F (2010) The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet 11:97–108

    Article  CAS  PubMed  Google Scholar 

  • Jain AK, Barton MC (2010) Making sense of ubiquitin ligases that regulate p53. Cancer Biol Ther 10:665–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain AK, Allton K, Duncan AD, Barton MC (2014) TRIM24 is a p53-induced E3-ubiquitin ligase that undergoes ATM-mediated phosphorylation and autodegradation during DNA damage. Mol Cell Biol 34:2695–2709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jeffery WR (2009) Regressive evolution in Astyanax cavefish. Annu Rev Genet 43:25–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin S, Martinek S, Joo WS et al (2000) Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci U S A 97:7301–7306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joerger AC, Fersht AR (2016) The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem 85:375–404

    Article  CAS  PubMed  Google Scholar 

  • Jones SN, Roe AE, Donehower LA, Bradley A (1995) Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208

    Article  CAS  PubMed  Google Scholar 

  • Jordan IK, Rogozin IB, Wolf YI, Koonin EV (2002) Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res 12:962–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kadakia M, Slader C, Berberich SJ (2001) Regulation of p63 function by Mdm2 and MdmX. DNA Cell Biol 20:321–330

    Article  CAS  PubMed  Google Scholar 

  • Kawanishi K, Dhar C, Do R, Varki N, Gordts PLSM, Varki A (2019) Human species-specific loss of CMP-N-acetylneuraminic acid hydroxylase enhances atherosclerosis via intrinsic and extrinsic mechanisms. Proc Natl Acad Sci U S A 116:16036–16045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King N, Westbrook MJ, Young SL et al (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH (1997) Regulation of p53 stability by Mdm2. Nature 387:299–303

    Article  CAS  PubMed  Google Scholar 

  • Kulikov R, Winter M, Blattner C (2006) Binding of p53 to the central domain of Mdm2 is regulated by phosphorylation. J Biol Chem 281:28575–28583

    Article  CAS  PubMed  Google Scholar 

  • Lane DP, Verma C (2012) Mdm2 in evolution. Genes Cancer 3:320–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane DP, Cheok CF, Brown C, Madhumalar A, Ghadessy FJ, Verma C (2010a) Mdm2 and p53 are highly conserved from placozoans to man. Cell Cycle 9:540–547

    Article  CAS  PubMed  Google Scholar 

  • Lane DP, Cheok CF, Brown CJ, Madhumalar A, Ghadessy FJ, Verma C (2010b) The Mdm2 and p53 genes are conserved in the arachnids. Cell Cycle 9:748–754

    Article  CAS  PubMed  Google Scholar 

  • Lee CW, La Thangue NB (1999) Promoter specificity and stability control of the p53-related protein p73. Oncogene 18:4171–4181

    Article  CAS  PubMed  Google Scholar 

  • Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S, Parant JM, Lozano G, Hakem R, Benchimol S (2003) Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112:779–791

    Article  CAS  PubMed  Google Scholar 

  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (2003) Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302:1972–1975

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Chen J, Elenbaas B, Levine AJ (1994) Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev 8:1235–1246

    Article  CAS  PubMed  Google Scholar 

  • Lohrum MA, Vousden KH (1999) Regulation and activation of p53 and its family members. Cell Death Differ 6:1162–1168

    Article  CAS  PubMed  Google Scholar 

  • Long M, Betrán E, Thornton K, Wang W (2003) The origin of new genes: glimpses from the young and old. Nat Rev Genet 4:865–875

    Article  CAS  PubMed  Google Scholar 

  • Love IM, Grossman SR (2012) It takes 15 to tango: making sense of the many ubiquitin ligases of p53. Genes Cancer 3:249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W-J, Abrams JM (2006) Lessons from p53 in non-mammalian models. Cell Death Differ 13:909–912

    Article  CAS  PubMed  Google Scholar 

  • Lu W-J, Amatruda JF, Abrams JM (2009) p53 ancestry: gazing through an evolutionary lens. Nat Rev Cancer 9:758–762

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Martin JD, Zhang H, Auger KR, Ho TF, Kirkpatrick RB, Grooms MH, Johanson KO, Tummino PJ, Copeland RA, Lai Z (2006) A second p53 binding site in the central domain of Mdm2 is essential for p53 ubiquitination. Biochemistry 45:9238–9245

    Article  CAS  PubMed  Google Scholar 

  • Maisse C, Guerrieri P, Melino G (2003) p73 and p63 protein stability: the way to regulate function? Biochem Pharmacol 66:1555–1561

    Article  CAS  PubMed  Google Scholar 

  • McLysaght A, Hurst LD (2016) Open questions in the study of de novo genes: what, how and why. Nat Rev Genet 17:567

    Article  CAS  PubMed  Google Scholar 

  • Minsky N, Oren M (2004) The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol Cell 16:631–639

    Article  CAS  PubMed  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The Mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245

  • Momand J, Villegas A, Belyi VA (2011) The evolution of MDM2 family genes. Gene 486:23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206

    Article  CAS  PubMed  Google Scholar 

  • Muttray AF, O’Toole TF, Morrill W et al (2010) An invertebrate Mdm homolog interacts with p53 and is differentially expressed together with p53 and ras in neoplastic Mytilus trossulus haemocytes. Comp Biochem Physiol B Biochem Mol Biol 156:298–308

  • Nedelcu AM, Tan C (2007) Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Dev Genes Evol 217:801–806

    Article  PubMed  Google Scholar 

  • Neira JL, Díaz-García C, Prieto M, Coutinho A (2019) The C-terminal SAM domain of p73 binds to the N terminus of MDM2. Biochim Biophys Acta Gen Subj 1863:760–770

    Article  CAS  PubMed  Google Scholar 

  • Niemiller ML, Fitzpatrick BM, Shah P, Schmitz L, Near TJ (2013) Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae). Evolution 67:732–748

    Article  CAS  PubMed  Google Scholar 

  • Notredame C, Higgins DG, Heringa J (2000) T-Coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Ollmann M, Young LM, Di Como CJ et al (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101:91–101

    Article  CAS  PubMed  Google Scholar 

  • Papanicolaou A, Schetelig MF, Arensburger P et al (2016) The whole genome sequence of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), reveals insights into the biology and adaptive evolution of a highly invasive pest species. Genome Biol 17:192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parfrey LW, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A 108:13624–13629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauli T, Burt TO, Meusemann K et al (2018) New data, same story: phylogenomics does not support Syrphoidea (Diptera: Syrphidae, Pipunculidae). Syst Entomol 43:447–459

    Article  Google Scholar 

  • Pearson BJ, Sánchez Alvarado A (2010) A planarian p53 homolog regulates proliferation and self-renewal in adult stem cell lineages. Development 137:213–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poyurovsky MV, Katz C, Laptenko O, Beckerman R, Lokshin M, Ahn J, Byeon IJL, Gabizon R, Mattia M, Zupnick A, Brown LM, Friedler A, Prives C (2010) The C terminus of p53 binds the N-terminal domain of MDM2. Nat Struct Mol Biol 17:982–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quevedo C, Kaplan DR, Derry WB (2007) AKT-1 regulates DNA-damage-induced germline apoptosis in C. elegans. Curr Biol 17:286–292

    Article  CAS  PubMed  Google Scholar 

  • Rafiqi AM, Lemke S, Ferguson S et al (2008) Evolutionary origin of the amnioserosa in cyclorrhaphan flies correlates with spatial and temporal expression changes of zen. Proc Natl Acad Sci U S A 105:234–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards S, Gibbs RA, Weinstock GM et al (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  CAS  PubMed  Google Scholar 

  • Rodrigo G, Fares MA (2018) Intrinsic adaptive value and early fate of gene duplication revealed by a bottom-up approach. Elife 7:e29739

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutkowski R, Hofmann K, Gartner A (2010) Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol 2:a001131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schlötterer C (2015) Genes from scratch – the evolutionary fate of de novo genes. Trends in Genetics 31:215–219

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schumacher B, Hanazawa M, Lee M-H et al (2005) Translational repression of C. elegans p53 by GLD-1 regulates DNA damage-induced apoptosis. Cell 120:357–368

    Article  CAS  PubMed  Google Scholar 

  • Scott JG, Warren WC, Beukeboom LW et al (2014) Genome of the house fly, Musca domestica L., a global vector of diseases with adaptations to a septic environment. Genome Biol 15:466

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Hecker N, Roscito JG, Foerster L, Langer BE, Hiller M (2018) A genomics approach reveals insights into the importance of gene losses for mammalian adaptations. Nat Commun 9:1215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin J-S, Ha J-H, Lee D-H, Ryu KS, Bae KH, Park BC, Park SG, Yi GS, Chi SW (2015) Structural convergence of unstructured p53 family transactivation domains in MDM2 recognition. Cell Cycle 14:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siau JW, Coffill CR, Zhang WV et al (2016) Functional characterization of p53 pathway components in the ancient metazoan Trichoplax adhaerens. Sci Rep 6:33972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simoes da Silva CJ, Fereres S, Simón R, Busturia A (2017) Drosophila SCE/dRING E3-ligase inhibits apoptosis in a Dp53 dependent manner. Dev Biol 429:81–91

    Article  CAS  PubMed  Google Scholar 

  • Spagnuolo A, Ristoratore F, Di Gregorio A et al (2003) Unusual number and genomic organization of Hox genes in the tunicate Ciona intestinalis. Gene 309:71–79

    Article  CAS  PubMed  Google Scholar 

  • Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, Loren van Themaat EV, Brown JKM, Butcher SA, Gurr SJ, Lebrun MH, Ridout CJ, Schulze-Lefert P, Talbot NJ, Ahmadinejad N, Ametz C, Barton GR, Benjdia M, Bidzinski P, Bindschedler LV, Both M, Brewer MT, Cadle-Davidson L, Cadle-Davidson MM, Collemare J, Cramer R, Frenkel O, Godfrey D, Harriman J, Hoede C, King BC, Klages S, Kleemann J, Knoll D, Koti PS, Kreplak J, López-Ruiz FJ, Lu X, Maekawa T, Mahanil S, Micali C, Milgroom MG, Montana G, Noir S, O’Connell RJ, Oberhaensli S, Parlange F, Pedersen C, Quesneville H, Reinhardt R, Rott M, Sacristán S, Schmidt SM, Schön M, Skamnioti P, Sommer H, Stephens A, Takahara H, Thordal-Christensen H, Vigouroux M, Weßling R, Wicker T, Panstruga R (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546

    Article  CAS  PubMed  Google Scholar 

  • Taly J-F, Magis C, Bussotti G, Chang JM, di Tommaso P, Erb I, Espinosa-Carrasco J, Kemena C, Notredame C (2011) Using the T-Coffee package to build multiple sequence alignments of protein, RNA, DNA sequences and 3D structures. Nat Protoc 6:1669–1682

    Article  CAS  PubMed  Google Scholar 

  • Thanos CD, Bowie JU (1999) p53 Family members p63 and p73 are SAM domain-containing proteins. Protein Sci 8:1708–1710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ureña E, Pirone L, Chafino S et al (2015) Evolution of SUMO function and chain formation in insects. Mol Biol Evol 33:568–584

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vilgelm AE, Zaika AI, Prassolov VS (2011) Coordinated interaction of multifunctional members of the p53 family determines many key processes in multicellular organisms. Mol Biol 45:156–171

    Article  CAS  Google Scholar 

  • von der Chevallerie K, Rolfes S, Schierwater B (2014) Inhibitors of the p53-Mdm2 interaction increase programmed cell death and produce abnormal phenotypes in the placozoan Trichoplax adhaerens (F.E. Schulze). Dev Genes Evol 224:79–85

    Article  CAS  PubMed  Google Scholar 

  • Wade M, Li Y-C, Wahl GM (2013) MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13:83–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahl GM, Stommel JM, Krummel K, Wade M (2007) Gatekeepers of the guardian: p53 regulation by post-translational modification, mdm2 and mdmx. In: 25 Years of p53 Research. Springer, pp 73–113

  • Wall DP, Fraser HB, Hirsh AE (2003) Detecting putative orthologs. Bioinformatics 19:1710–1711

    Article  CAS  PubMed  Google Scholar 

  • Wallace IM, O’Sullivan O, Higgins DG, Notredame C (2006) M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Res 34:1692–1699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Jiang X (2012) Mdm2 and MdmX partner to regulate p53. FEBS Lett 586:1390–1396

    Article  CAS  PubMed  Google Scholar 

  • Wang L-S, Li N-X, Chen J-J, Zhang XP, Liu F, Wang W (2018) Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks. Phys Rev E 97:042412

    Article  CAS  PubMed  Google Scholar 

  • Waskar M, Landis GN, Shen J et al (2009) Drosophila melanogaster p53 has developmental stage-specific and sex-specific effects on adult life span indicative of sexual antagonistic pleiotropy. Aging 1:903–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim JW, Lambkin C, Bertone MA, Cassel BK, Bayless KM, Heimberg AM, Wheeler BM, Peterson KJ, Pape T, Sinclair BJ, Skevington JH, Blagoderov V, Caravas J, Kutty SN, Schmidt-Ott U, Kampmeier GE, Thompson FC, Grimaldi DA, Beckenbach AT, Courtney GW, Friedrich M, Meier R, Yeates DK (2011) Episodic radiations in the fly tree of life. Proc Natl Acad Sci U S A 108:5690–5695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53-mdm-2 autoregulatory feedback loop. Genes Dev 7:1126–1132

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki S, Yagishita N, Sasaki T, Nakazawa M, Kato Y, Yamadera T, Bae E, Toriyama S, Ikeda R, Zhang L, Fujitani K, Yoo E, Tsuchimochi K, Ohta T, Araya N, Fujita H, Aratani S, Eguchi K, Komiya S, Maruyama I, Higashi N, Sato M, Senoo H, Ochi T, Yokoyama S, Amano T, Kim J, Gay S, Fukamizu A, Nishioka K, Tanaka K, Nakajima T (2007) Cytoplasmic destruction of p53 by the endoplasmic reticulum-resident ubiquitin ligase ‘Synoviolin’. EMBO J 26:113–122

  • Yan W, Sheng N, Seto M et al (1999) Corin, a mosaic transmembrane serine protease encoded by a novel cDNA from human heart. J Biol Chem 274:14926–14935

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Stephen CW, Luciani MG, Fåhraeus R (2002) p53 stability and activity is regulated by Mdm2-mediated induction of alternative p53 translation products. Nat Cell Biol 4:462–467

    Article  CAS  PubMed  Google Scholar 

  • Ying M, Huang X, Zhao H et al (2011) Comprehensively surveying structure and function of RING domains from Drosophila melanogaster. PLoS One 6:e23863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu WG, Rudiger S, Veprintsev D et al (2006) The central region of HDM2 provides a second binding site for p53. Proc Natl Acad Sci 103:1227–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zdzalik M, Pustelny K, Kedracka-Krok S, Huben K, Pecak A, Wladyka B, Jankowski S, Dubin A, Potempa J, Dubin G (2010) Interaction of regulators Mdm2 and Mdmx with transcription factors p53, p63 and p73. Cell Cycle 9:4584–4591

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X, Kaelin WG Jr, Oren M, Chen J, Lu H (1999) MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol 19:3257–3266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Zhang G, Zhang Y et al (2008) On the origin of new genes in Drosophila. Genome Res 18:1446–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the two anonymous reviewers for their attentive, thoughtful, and in the end crucially stimulating comments, high school intern Johanan Isaac for help with analyses in the gene knockdown experiments, and Lori Pile for proofreading comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Friedrich.

Additional information

Communicated by Claude Desplan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 4 kb)

ESM 2

(XLSX 6 kb)

ESM 3

(DOCX 16 kb)

ESM 4

(DOCX 7 kb)

ESM 5

(DOCX 821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasti, N., Sebagh, D., Riaz, M. et al. Towards reconstructing the dipteran demise of an ancient essential gene: E3 ubiquitin ligase Murine double minute. Dev Genes Evol 230, 279–294 (2020). https://doi.org/10.1007/s00427-020-00663-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00427-020-00663-8

Keywords

Navigation