Skip to main content
Log in

Cellulose nanocrystal reinforced poly(lactic acid) nanocomposites prepared by a solution precipitation approach

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The difficulty of dispersing cellulose nanocrystals (CNCs) in poly(lactic acid) (PLA) was still a primary obstacle to enhance the properties of PLA nanocomposites. In this work, two different methods were used to modify CNCs that were then added dropwise and mixed with the PLA solution to conveniently obtain the composites. Transmission electron microscopy and Fourier transform infrared spectroscopy were used to characterize CNCs before and after modification. Ultraviolet–visible spectroscopy, tensile tests, differential scanning calorimetry, and thermogravimetric analysis were used to characterize the PLA nanocomposites. The results revealed that the CNCs that were modified with surfactant had better dispersion and thermal stability in the PLA nanocomposites. The Young’s modulus and strength of PLA/SCNC nanocomposites were significantly reinforced (up to 66.0% and 29.8%, respectively). Meanwhile, the transmittance remained above 60% in the visible range. The solution precipitation approach was effective and simple, which could be used with other polymers.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2):785–794

    Article  CAS  Google Scholar 

  • Alvarado N, Romero J, Torres A, Lopez De Dicastillo C, Rojas A, Jose Galotto M (2018) Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl alcohol)-cellulose nanocrystals nanofibers: development an active food packaging material. J Food Eng 217:1–10

    Article  CAS  Google Scholar 

  • Ansari F, Salajkova M, Zhou Q, Berglund LA (2015) Strong surface treatment effects on reinforcement efficiency in biocomposites based on cellulose nanocrystals in poly(vinyl acetate) matrix. Biomacromolecules 16(12):3916–3924

    Article  CAS  PubMed  Google Scholar 

  • Arrieta MP, Fortunati E, Dominici F, Rayon E, Lopez J, Kenny JM (2014) Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties. Carbohydr Polym 107:16–24

    Article  CAS  PubMed  Google Scholar 

  • Aulin C, Karabulut E, Amy T, Wagberg L, Lindstrom T (2013) Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties. ACS Appl Mater Interfaces 5(15):7352–7359

    Article  CAS  PubMed  Google Scholar 

  • Azeredo HMC, Rosa MF, Mattoso LHC (2017) Nanocellulose in bio-based food packaging applications. Ind Crop Prod 97:664–671

    Article  CAS  Google Scholar 

  • Bezerra Lima EM, Lima AM, Silva Minguita AP, Rojas Dos Santos NR, Soares Pereira IC, Matta Neves TT (2019) Poly(lactic acid) biocomposites with mango waste and organo-montmorillonite for packaging. J Appl Polym Sci 136:4751221

    Google Scholar 

  • Boujemaoui A, Mongkhontreerat S, Malmstrom E, Carlmark A (2015) Preparation and characterization of functionalized cellulose nanocrystals. Carbohydr Polym 115:457–464

    Article  CAS  PubMed  Google Scholar 

  • Brinatti C, Huang J, Berry RM, Tam KC, Loh W (2016) Structural and energetic studies on the interaction of cationic surfactants and cellulose nanocrystals. Langmuir 32(3):689–698

    Article  CAS  PubMed  Google Scholar 

  • Chi K, Catchmark JM (2017) Enhanced dispersion and interface compatibilization of crystalline nanocellulose in polylactide by surfactant adsorption. Cellulose 24(11):4845–4860

    Article  CAS  Google Scholar 

  • Dhar P, Kumar A, Katiyar V (2016a) Magnetic cellulose nanocrystal based anisotropic polylactic acid nanocomposite films: influence on electrical, magnetic, thermal, and mechanical properties. ACS Appl Mater Interfaces 8(28):18393–18409

    Article  CAS  PubMed  Google Scholar 

  • Dhar P, Tarafder D, Kumar A, Katiyar V (2016b) Thermally recyclable polylactic acid/cellulose nanocrystal films through reactive extrusion process. Polymer 87:268–282

    Article  CAS  Google Scholar 

  • Dhar P, Gaur SS, Soundararajan N, Gupta A, Bhasney SM, Milli M (2017) Reactive extrusion of polylactic acid/cellulose nanocrystal films for food packaging applications: influence of filler type on thermomechanical, rheological, and barrier properties. Ind Eng Chem Res 56(16):4718–4735

    Article  CAS  Google Scholar 

  • Fortunati E, Peltzer M, Armentano I, Torre L, Jimenez A, Kenny JM (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90(2):948–956

    Article  CAS  PubMed  Google Scholar 

  • Fortunati E, Luzi F, Puglia D, Petrucci R, Kenny JM, Torre L (2015) Processing of PLA nanocomposites with cellulose nanocrystals extracted from Posidonia oceanica waste: innovative reuse of coastal plant. Ind Crop Prod 67:439–447

    Article  CAS  Google Scholar 

  • Gan PG, Sam ST, Bin Abdullah MF, Omar MF (2019) Thermal properties of nanocellulose-reinforced composites: a review. J Appl Polym Sci 137:48544

    Article  CAS  Google Scholar 

  • Gupta A, Simmons W, Schueneman GT, Hylton D, Mintz EA (2017) Rheological and thermo-mechanical properties of poly(lactic acid)/lignin-coated cellulose nanocrystal composites. ACS Sustain Chem Eng 5(2):1711–1720

    Article  CAS  Google Scholar 

  • Hamad K, Kaseem M, Ayyoob M, Joo J, Deri F (2018) Polylactic acid blends: the future of green, light and tough. Prog Polym Sci 85:83–127

    Article  CAS  Google Scholar 

  • Hong JS, Srivastava D, Lee I (2018) Fabrication of poly(lactic acid) nano- and microparticles using a nanomixer via nanoprecipitation or emulsion diffusion. J Appl Polym Sci 135:4619918

    Google Scholar 

  • Hu C, Li Z, Wang Y, Gao J, Dai K, Zheng G (2017) Comparative assessment of the strain-sensing behaviors of polylactic acid nanocomposites: reduced graphene oxide or carbon nanotubes. J Mater Chem C 5(9):2318–2328

    Article  CAS  Google Scholar 

  • Huang L, Ye Z, Berry R (2016) Modification of cellulose nanocrystals with quaternary ammonium-containing hyperbranched polyethylene ionomers by ionic assembly. ACS Sustain Chem Eng 4(9):4937–4950

    Article  CAS  Google Scholar 

  • Kaboorani A, Riedl B (2015) Surface modification of cellulose nanocrystals (CNC) by a cationic surfactant. Ind Crop Prod 65:45–55

    Article  CAS  Google Scholar 

  • Kargarzadeh H, Huang J, Lin N, Ahmad I, Mariano M, Dufresne A (2018) Recent developments in nanocellulose-based biodegradable polymers, thermoplastic polymers, and porous nanocomposites. Prog Polym Sci 87:197–227

    Article  CAS  Google Scholar 

  • Khalil HPSA, Banerjee A, Saurabh CK, Tye YY, Suriani AB, Mohamed A (2018) Biodegradable films for fruits and vegetables packaging application: preparation and properties. Food Eng Rev 10(3):139–153

    Article  CAS  Google Scholar 

  • Kian LK, Saba N, Jawaid M, Sultan MTH (2019) A review on processing techniques of bast fibers nanocellulose and its polylactic acid (PLA) nanocomposites. Int J Biol Macromol 121:1314–1328

    Article  CAS  PubMed  Google Scholar 

  • Lepeltier E, Bourgaux C, Couvreur P (2014) Nanoprecipitation and the “Ouzo effect”: application to drug delivery devices. Adv Drug Deliv Rev 71:86–97

    Article  CAS  PubMed  Google Scholar 

  • Lizundia E, Fortunati E, Dominici F, Luis Vilas J, Manuel Leon L, Armentano I (2016) PLLA-grafted cellulose nanocrystals: role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113

    Article  CAS  PubMed  Google Scholar 

  • Luzi F, Fortunati E, Jimenez A, Puglia D, Pezzolla D, Gigliotti G (2016) Production and characterization of PLA_PBS biodegradable blends reinforced with cellulose nanocrystals extracted from hemp fibres. Ind Crop Prod 93(SI):276–289

    Article  CAS  Google Scholar 

  • Mariano M, Pilate F, de Oliveira FB, Khelifa F, Dubois P, Raquez J, Dufresne A (2017) Preparation of cellulose nanocrystal-reinforced poly(lactic acid) nanocomposites through noncovalent modification with PLLA-based surfactants. ACS OMEGA 2(6):2678–2688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monika Dhar P, Katiyar V (2017) Thermal degradation kinetics of polylactic acid/acid fabricated cellulose nanocrystal based bionanocomposites. Int J Biol Macromol 104(A):827–836

    Article  CAS  PubMed  Google Scholar 

  • Mujica-Garcia A, Hooshmand S, Skrifvars M, Kenny JM, Oksman K, Peponi L (2016) Poly(lactic acid) melt-spun fibers reinforced with functionalized cellulose nanocrystals. RSC Adv 6(11):9221–9231

    Article  CAS  Google Scholar 

  • Murariu M, Doumbia A, Bonnaud L, Dechief A, Paint Y, Ferreira M (2011) High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules 12(5):1762–1771

    Article  CAS  PubMed  Google Scholar 

  • Nagalakshmaiah M, El Kissi N, Dufresne A (2016) Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl Mater Interfaces 8(13):8755–8764

    Article  CAS  PubMed  Google Scholar 

  • Nair SS, Chen H, Peng Y, Huang Y, Yan N (2018) Polylactic acid biocomposites reinforced with nanocellulose fibrils with high lignin content for improved mechanical, thermal, and barrier properties. ACS Sustain Chem Eng 6(8):10058–10068

    Article  CAS  Google Scholar 

  • Natterodt JC, Shirole A, Sapkota J, Zoppe JO, Weder C (2018) Polymer nanocomposites with cellulose nanocrystals made by co-precipitation. J Appl Polym Sci 135:4564824SI

    Article  CAS  Google Scholar 

  • Patel DK, Dutta SD, Lim K (2019) Nanocellulose-based polymer hybrids and their emerging applications in biomedical engineering and water purification. RSC Adv 9(33):19143–19162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32(2):128–141

    Article  CAS  Google Scholar 

  • Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (PLLA)—crystallization and mechanical property effects. Compos Sci Technol 70(5):815–821

    Article  CAS  Google Scholar 

  • Petersson L, Kvien I, Oksman K (2007) Structure and thermal properties of poly(lactic acid)/cellulose whiskers nanocomposite materials. Compos Sci Technol 67(11–12):2535–2544

    Article  CAS  Google Scholar 

  • Rabanel J, Faivre J, Tehrani SF, Lalloz A, Hildgen P, Banquy X (2015) Effect of the polymer architecture on the structural and biophysical properties of PEG-PLA nanoparticles. ACS Appl Mater Interfaces 7(19):10374–10385

    Article  CAS  PubMed  Google Scholar 

  • Ranjbar D, Raeiszadeh M, Lewis L, MacLachlan MJ, Hatzikiriakos SG (2020) Adsorptive removal of Congo red by surfactant modified cellulose nanocrystals: a kinetic, equilibrium, and mechanistic investigation. Cellulose 27(6):3211–3232

    Article  CAS  Google Scholar 

  • Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35(3):338–356

    Article  CAS  Google Scholar 

  • Rhim J, Park H, Ha C (2013) Bio-nanocomposites for food packaging applications. Prog Polym Sci 38(10–11):1629–1652

    Article  CAS  Google Scholar 

  • Robles E, Urruzola I, Labidi J, Serrano L (2015) Surface-modified nano-cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind Crop Prod 71:44–53

    Article  CAS  Google Scholar 

  • Roman M, Winter WT (2004) Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose. Biomacromolecules 5(5):1671–1677

    Article  CAS  PubMed  Google Scholar 

  • Salajkova M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22(37):19798–19805

    Article  CAS  Google Scholar 

  • Scaffaro R, Maio A, Lopresti F (2019) Effect of graphene and fabrication technique on the release kinetics of carvacrol from polylactic acid. Compos Sci Technol 169:60–69

    Article  CAS  Google Scholar 

  • Shojaeiarani J, Bajwa DS, Stark NM (2018) Spin-coating: a new approach for improving dispersion of cellulose nanocrystals and mechanical properties of poly(lactic acid) composites. Carbohydr Polym 190:139–147

    Article  CAS  PubMed  Google Scholar 

  • Siakeng R, Jawaid M, Ariffin H, Sapuan SM, Asim M, Saba N (2019) Natural fiber reinforced polylactic acid composites: a review. Polym Compos 40(2):446–463

    Article  CAS  Google Scholar 

  • Spinella S, Lo Re G, Liu B, Dorgan J, Habibi Y, Leclere P (2015) Polylactide/cellulose nanocrystal nanocomposites: efficient routes for nanofiber modification and effects of nanofiber chemistry on PLA reinforcement. Polymer 65:9–17

    Article  CAS  Google Scholar 

  • Sung SH, Chang Y, Han J (2017) Development of polylactic acid nanocomposite films reinforced with cellulose nanocrystals derived from coffee silverskin. Carbohydr Polym 169:495–503

    Article  CAS  PubMed  Google Scholar 

  • Turner JF, Riga A, O’Connor A, Zhang J, Collis J (2004) Characterization of drawn and undrawn poly-l-lactide films by differential scanning calorimetry. J Therm Anal Calorim 75(1):257–268

    Article  CAS  Google Scholar 

  • Vatansever E, Arslan D, Nofar M (2019) Polylactide cellulose-based nanocomposites. Int J Biol Macromol 137:912–938

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly(lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4(10):5079–5085

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Liang T, Zhang B, Bai H, Ma P, Dong W (2018) Green functionalization of cellulose nanocrystals for application in reinforced poly(methyl methacrylate) nanocomposites. Carbohydr Polym 202:591–599

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Yao Z, Zhou J, He M, Jiang Q, Li A, Li S, Liu M, Luo S, Zhang D (2019) Improvement of polylactic acid film properties through the addition of cellulose nanocrystals isolated from waste cotton cloth. Int J Biol Macromol 129:878–886

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Nagarajan S, Zhou L, Duan Y, Zhang J (2016) Synthesis and characterization of cellulose nanocrystal-graft-poly(d-lactide) and its nanocomposite with poly(l-lactide). Polymer 103:365–375

    Article  CAS  Google Scholar 

  • Wu H, Nagarajan S, Shu J, Zhang T, Zhou L, Duan Y, Zhang J (2018) Green and facile surface modification of cellulose nanocrystal as the route to produce poly(lactic acid) nanocomposites with improved properties. Carbohydr Polym 197:204–214

    Article  CAS  PubMed  Google Scholar 

  • Xie Q, Wang S, Chen X, Zhou Y, Fang H, Li X, Cheng S, Ding Y (2018) Thermal stability and crystallization behavior of cellulose nanocrystals and their poly(l-lactide) nanocomposites: effects of surface ionic group and poly(d-lactide) grafting. Cellulose 25(12):6847–6862

    Article  CAS  Google Scholar 

  • Xu C, Chen J, Wu D, Chen Y, Lv Q, Wang M (2016) Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property relation study. Carbohydr Polym 146:58–66

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Yang H, Yang D, Yu Z (2017) Polylactic acid nanofiber Scaffold decorated with chitosan islandlike topography for bone tissue engineering. ACS Appl Mater Interfaces 9(25):21094–21104

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Zhao L, Jiang X, Wang H, Gao W (2017) Poly(lactic acid)-based biocomposites reinforced with modified cellulose nanocrystals. Cellulose 24(11):4773–4784

    Article  CAS  Google Scholar 

  • Yin Y, Ma J, Tian X, Jiang X, Wang H, Gao W (2018) Cellulose nanocrystals functionalized with amino-silane and epoxy-poly(ethylene glycol) for reinforcement and flexibilization of poly(lactic acid): material preparation and compatibility mechanism. Cellullose 25(11):6447–6463

    Article  CAS  Google Scholar 

  • Yu H, Wang C, Abdalkarim SYH (2017a) Cellulose nanocrystals/polyethylene glycol as bifunctional reinforcing/compatibilizing agents in poly(lactic acid) nanofibers for controlling long-term in vitro drug release. Cellulose 24(10):4461–4477

    Article  CAS  Google Scholar 

  • Yu H, Zhang H, Song M, Zhou Y, Yao J, Ni Q (2017b) From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl Mater Interfaces 9(50):43920–43938

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Jiang Y, Han L, Wang B, Xu H, Zhong Y (2018) Biodegradable regenerated cellulose-dispersed composites with improved properties via a pickering emulsion process. Carbohydr Polym 179:86–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31670569) and the Fundamental Research Funds for the Central Universities (No. 2572019CG05). The work was supported by a Postdoctoral Science Foundation Funded Project (LBH-Q17003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanjun Xie or Yanhua Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Sun, C., Wang, C. et al. Cellulose nanocrystal reinforced poly(lactic acid) nanocomposites prepared by a solution precipitation approach. Cellulose 27, 7489–7502 (2020). https://doi.org/10.1007/s10570-020-03294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03294-4

Keywords

Navigation