Skip to main content
Log in

Evaluation of Supplementary Constraints on Dispersion of EDPs Using Real Ground Motion Record Sets

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nonlinear dynamic analysis is the most advanced structural analysis method, and it has become very widespread method to determine structural responses for seismic design or assessment. On the other hand, structural responses strongly rely on the selection of earthquake records for nonlinear dynamic analysis. In this study, several earthquake record selection strategies which impose different compatibility levels between the spectral shape of earthquake records and target spectrum are introduced. Eurocode-8 procedure is considered as reference record selection strategy. Four main engineering demand parameters (EDPs): maximum floor acceleration, global drift ratio, inter-story drift ratio and residual global drift ratio, are used to investigate the superiority of presented strategies. Nonlinear dynamic analyses of three representative low- and mid-rise RC frames are carried out to obtain the EDPs. The central tendency and dispersion of the EDPs are utilized to investigate efficiency of the strategies. Results indicated that the EDPs are correlated with dispersion of spectral accelerations. Numerical evaluations have also highlighted that the presented strategies are capable of providing consistent mean structural responses. It is thought that the presented strategies can be used to select real earthquake records for nonlinear dynamic analysis of structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. ASCE 41-17: Seismic Evaluation and Retrofit of Existing Buildings. American Society of Civil Engineers, Reston (2017)

    Google Scholar 

  2. Priestley, M.J.N.; Calvi, G.M.; Kowalsky, M.J.: Displacement-Based Seismic Design of Structures. IUSS Press, Pavia (2007)

    Google Scholar 

  3. EUROCODE-8: Design of Structures for Earthquake Resistance, Part 1: General Rules, Seismic Actions and Rules for Buildings. EN1998-1-2004, European Committee for Standardization. Brussels (2004)

  4. TBEC: Turkish Building Earthquake Code. Disaster and Emergency Management Presidency. Ankara (2018)

  5. ASCE 07-16: Minimum Design Loads for Buildings and Other Structures. American Society of Civil Engineers, Reston (2016)

    Google Scholar 

  6. GB: Code for Seismic Design of Buildings. China Architecture and Building Press, Beijing (2010)

    Google Scholar 

  7. Araújo, M.; Macedo, L.; Marques, M.; Castro, J.M.: Code-based record selection methods for seismic performance assessment of buildings. Earthq. Eng. Struct. Dyn. 45, 129–148 (2016). https://doi.org/10.1002/eqe.2620

    Article  Google Scholar 

  8. Macedo, L.; Castro, J.M.: SelEQ: an advanced ground motion record selection and scaling framework. Adv. Eng. Softw. 114, 1–16 (2017). https://doi.org/10.1016/j.advengsoft.2017.05.005

    Article  Google Scholar 

  9. Kayhan, A.H.; Demir, A.; Palanci, M.: Statistical evaluation of maximum displacement demands of SDOF systems by code-compatible nonlinear time history analysis. Soil Dyn. Earthq. Eng. 115, 513–530 (2018). https://doi.org/10.1016/j.soildyn.2018.09.008

    Article  Google Scholar 

  10. Katsanos, E.I.; Sextos, A.G.: ISSARS: an integrated software environment for structure-specific earthquake ground motion selection. Adv. Eng. Softw. 58, 70–85 (2013). https://doi.org/10.1016/j.advengsoft.2013.01.003

    Article  Google Scholar 

  11. Han, S.W.; Seok, S.W.: Efficient procedure for selecting and scaling ground motions for response history analysis. J. Struct. Eng. 140(1), 1–6 (2014). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000881

    Article  Google Scholar 

  12. Palanci, M.; Kayhan, A.H.; Demir, A.: A statistical assessment on global drift ratio demands of mid-rise RC buildings using code-compatible real ground motion records. Bull. Earthq. Eng. 16(11), 5453–5488 (2018). https://doi.org/10.1007/s10518-018-0384-y

    Article  Google Scholar 

  13. Shome, N.; Cornell, A.C.; Bazzurro, P.; Carballo, J.E.: Earthquakes, records and nonlinear responses. Earthq. Spectra 14(3), 469–500 (1998). https://doi.org/10.1193/1.1586011

    Article  Google Scholar 

  14. Katsanos, I.E.; Sextos, G.A.; Manolis, D.G.: Selection of earthquake ground motion records: a state-of-the-art-review from a structural engineering perspective. Soil Dyn. Earthq. Eng. 30(4), 157–169 (2010). https://doi.org/10.1016/j.soildyn.2009.10.005

    Article  Google Scholar 

  15. Bommer, J.J.; Acevedo, A.B.: The use of real earthquake accelerograms as input to dynamic analysis. J. Earthq. Eng. 8(1), 43–91 (2004). https://doi.org/10.1080/13632460409350521

    Article  Google Scholar 

  16. Beyer, K.; Bommer, J.J.: Selection and scaling of real accelerograms for bidirectional loading: a review of current practice and code provisions. J. Earthq. Eng. 11(1), 13–45 (2007). https://doi.org/10.1080/13632460701280013

    Article  Google Scholar 

  17. Baker, J.W.: Conditional mean spectrum: tool for ground-motion selection. J. Struct. Eng. 137(3), 322–331 (2011). https://doi.org/10.1061/(ASCE)ST.1943-541X.0000215

    Article  Google Scholar 

  18. FEMA-368: NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures. Federal Emergency Management Agency, Washington (2001)

    Google Scholar 

  19. Kayhan, A.H.; Korkmaz, K.A.; Irfanoglu, A.: Selecting and scaling real ground motion records using harmony search algorithm. Soil Dyn. Earthq. Eng. 31(7), 941–953 (2011). https://doi.org/10.1016/j.soildyn.2011.02.009

    Article  Google Scholar 

  20. Kayhan, A.H.: Scaled and unscaled ground motion sets for uni-directional and bi-directional dynamic analysis. Earthq. Struct. 10(3), 563–588 (2016). https://doi.org/10.12989/eas.2016.10.3.563

    Article  Google Scholar 

  21. Sextos, A.G.; Katsanos, E.I.; Manolis, G.D.: EC8-based earthquake record selection procedure evaluation: validation study based on observed damage of an irregular R/C building. Soil Dyn. Earthq. Eng. 31(4), 583–597 (2011). https://doi.org/10.1016/j.soildyn.2010.10.009

    Article  Google Scholar 

  22. Reyes, J.C.; Kalkan, E.: How many records should be used in an ASCE/SEI-7 ground motion scaling procedure. Earthq. Spectra 28(3), 1223–1242 (2012). https://doi.org/10.1193/1.4000066

    Article  Google Scholar 

  23. Kayhan, A.H.; Demir, A.: Statistical evaluation of drift demands of RC frames using code-compatible real ground motion record sets. Struct. Eng. Mech. 60(6), 953–977 (2016). https://doi.org/10.12989/sem.2016.60.6.953

    Article  Google Scholar 

  24. Hancock, J.; Bommer, J.J.; Stafford, P.J.: Numbers of scaled and matched accelerograms required for inelastic dynamic analyses. Earthq. Eng. Struct. Dyn. 37(14), 1585–1607 (2008). https://doi.org/10.1002/eqe.827

    Article  Google Scholar 

  25. Mergos, P.E.; Sextos, A.G.: Selection of earthquake ground motions for multiple objectives using genetic algorithms. Eng. Struct. 187, 414–427 (2019). https://doi.org/10.1016/j.engstruct.2019.02.067

    Article  Google Scholar 

  26. Akkar, S.; Sucuoglu, H.; Yakut, A.: Displacement-Based fragility functions for low-and mid-rise ordinary concrete buildings. Earthq. Spectra 24(4), 901–927 (2005). https://doi.org/10.1193/1.2084232

    Article  Google Scholar 

  27. Bessason, B.; Bjarnason, J.Ö.: Seismic vulnerability of low-rise residential buildings based on damage data from three earthquakes (Mw 6.5, 6.5 and 6.3). Eng. Struct. 111, 64–79 (2016). https://doi.org/10.1016/j.engstruct.2015.12.008

    Article  Google Scholar 

  28. SAP2000: Integrated Solution for Structural Analysis and Design. Computers and Structures. Berkeley (2009)

  29. Ersoy, U.; Ozcebe, G.: Reinforced Concrete. Evrim Yayınevi, Istanbul (2004)

    Google Scholar 

  30. Park, R.; Priestley, M.J.N.; Gill, W.D.: Ductility of square-confined concrete columns. J. Struct. Div. 108(4), 929–950 (1982)

    Google Scholar 

  31. Mander, J.B.: Seismic design of bridge piers, research report 84-2. Department of Civil Engineering, University of Canterbury, Christchurch (1984)

    Google Scholar 

  32. Palanci, M.; Kalkan, A.; Senel, S.M.: Investigation of shear effects on the capacity and demand estimation of RC buildings. Struct. Eng. Mech. 60(6), 1021–1038 (2016). https://doi.org/10.12989/sem.2016.60.6.1021

    Article  Google Scholar 

  33. ACI 318: Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08) MI. ACI, Farmington Hills (2008)

  34. Iervolino, I.; Maddaloni, G.; Cosenza, E.: Eurocode-8 compliant real record sets for seismic analysis of structures. J. Earthq. Eng. 12(1), 54–90 (2008). https://doi.org/10.1080/13632460701457173

    Article  Google Scholar 

  35. Ambraseys, N.N.; Douglas, J.; Rinaldis, D.; Berge, C.T.; Suhadolc, P.; Costa, G.; Sigbjornsson, R.; Smit, P.: Dissemination of European strong-motion data, vol. 2. CD-ROM Collection. Engineering and Physical Sciences Research Council, Swindon (2004)

    Google Scholar 

  36. Ancheta, T.D.; Darragh, R.B.; Stewart, J.P.; Seyhan, E.; Silva, W.J.; Chiou, B.S.-J.; Wooddell, K.E.; Graves, R.W.; Kottke, A.R.; Boore, D.M.; Kishida, T.; Donahue, J.L.: NGA-West2 database. Earthq. Spectra 30, 989–1005 (2014). https://doi.org/10.1193/070913EQS197M

    Article  Google Scholar 

  37. Geem, Z.W.; Kim, J.H.; Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001). https://doi.org/10.1177/003754970107600201

    Article  Google Scholar 

  38. Du, W.; Ning, C.L.; Wang, G.: The effect of amplitude scaling limits on conditional spectrum-based ground motion selection. Earthq. Eng. Struct. Dyn. (2019). https://doi.org/10.1002/eqe.3173

    Article  Google Scholar 

  39. García, R.J.; Guerrero, H.: Prediction of residual displacement ratios for simple structures built on soft-soil sites of Mexico City. Soil Dyn. Earthq. Eng. 126, 105809 (2019). https://doi.org/10.1016/j.soildyn.2019.105809

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Haydar Kayhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, A., Palanci, M. & Kayhan, A.H. Evaluation of Supplementary Constraints on Dispersion of EDPs Using Real Ground Motion Record Sets. Arab J Sci Eng 45, 8379–8401 (2020). https://doi.org/10.1007/s13369-020-04719-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04719-9

Keywords

Navigation