Skip to main content
Log in

Features of the Charge State of UHMWPE + α-SiO2 Nanocomposites

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract—

This paper presents the results into the study of electret properties of composite materials based on ultrahigh molecular weight polyethylene (UHMWPE) and nano-dispersed amorphous silica filler α-SiO2 (aerosil) depending on the volume content of silicon dioxide and the absorbed dose D γ-irradiation at room temperature using the method of thermally stimulated depolarization (TSD). It was found that introducing up to 5% of spherical nanoparticles of amorphous α-SiO2 silicon dioxide with a diameter of 20 nm in UHMWPE first increases and then reduces the electret characteristics of the composites. UHMWPE + 1% α-SiO2 has the maximum value of the electret potential difference and the stability of the electret state. It was shown that preliminary γ-irradiation affects the electret properties of the studied composite material, which is associated with its increased electrical conductivity and a high charge relaxation rate. The observed increase in the initial surface charge density σel of UHMWPE compositions is associated with the presence of energy traps of injected charge carriers. Based on the analyzing the spectra of TSD, it was shown that the thermal stability of electrets from the UHMWPE composite + 1% α-SiO2 is improved. The nature of the TSD current of pre-γ-irradiated films once again proves that, after γ-irradiation, the injected charges from the corona zone mainly accumulate in the near-surface layers of the irradiated samples. The results of TSD suggest that the relaxation of the electret state in the materials under study occurs due to the bulk conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Selyutin, G.E., Gavrilov, Yu.Yu., Voskresenskaya, E.N., Zakharov, V.A., et al., Khim. Interesakh Ustoich. Razvit., 2010, vol. 18, pp. 375–388.

    Google Scholar 

  2. Magerramov, A.M., Strukturnoe i radiatsionnoe modifitsirovanie elektretnykh, p’ezoelektricheskikh svoistv polimernykh kompozitov (Structural and Radiation Modification of Electretic and Piezoelectric Properties of Polymeric Composites), Baku: Elm, 2001.

  3. Bordovskii, G.A., Gorokhovatskii, Yu.A., and Gorokhovatskii, I.Yu., Izv. Ross. Gos. Pedagog. Univ.im.A.I. Gertsena, 2009, vol. 79, no. 11, pp. 26–34.

    Google Scholar 

  4. Kolupaev, B.B., J. Eng. Phys. Thermophys., 2007, vol. 80, no. 1, pp. 196–203.

    Article  Google Scholar 

  5. Radiatsionnaya khimiya polimerov (Radiation Chemistry of Polymers), Kargin, A.A., Ed., Moscow: Nauka, 1973.

    Google Scholar 

  6. Ismaiilova, R.S., Magerramov, A.M., Kuliev, M.M., and Akhundova, G.A., Surf. Eng. Appl. Electrochem., 2018, vol. 54, no. 1, pp. 6–11.

    Article  Google Scholar 

  7. Gud’, V.N., Kolupaev, B.S., and Malinovskiy, E.V., Surf. Eng. Appl. Electrochem., 2012, vol. 48, no. 2, pp. 148–150.

    Article  Google Scholar 

  8. Magerramov, A.M., Kuliev, M.M., Aliev, N.A., Ismayilova, R.S., Bairamov, M.N., and Abbasov, I.I., Visn. Nats. Tekh. Univ.KhPI, 2017, vol. 44, pp. 13–19.

    Google Scholar 

  9. Magerramov, A.M., Ismayilova, R.S., Kuliev, M.M., Nabiev, A.A., Gadzhieva, E.G., et al., Prob. At. Sci. Technol., 2018, vol. 5, no. 117, pp. 50–54.

    Google Scholar 

  10. Galikhanov, M.F., Deberdeev, T.R., Karimov, I.A., Kuznetsova, N.V., et al., Plast. Massy, 2017, nos. 1–2, pp. 14–17.

  11. Guzhova, A.A. and Galikhanov, M.F., Surf. Eng. Appl. Electrochem., 2017, vol. 53, no. 3, pp. 240–244.

    Article  Google Scholar 

  12. Garcia, M., Vliet, G.V., Jain, S., Schrauwen, B.A.G., et al., Rev. Adv. Mater. Sci., 2004, vol. 50, pp. 169–175.

    Google Scholar 

  13. Kontou, E. and Niaounakis, M., Polymer, 2006, vol. 47, pp. 1267–1280.

    Article  Google Scholar 

  14. Electrets, Sessler, G.M., Ed., New York: Springer-Verlag, 1980.

    Google Scholar 

  15. Gorokhovatskii, Yu.A., Aniskina, L.B., Burda, V.V., Galikhanov, M.F., et al., Izv. Ross. Gos. Pedagog. Univ. im. A.I. Gertsena, Estestv. Tochn. Nauki, 2009, no. 95, pp. 63–76.

  16. Osina, Yu.L., Borisova, M.F., and Galikhanov, M.F., Nauchno-Tekh. Ved. S.-Peterb. Gos. Politekh. Univ., 2013, nos. 1–4, pp. 151–157.

  17. Pomogailo, A.D., Rozenberg, A.S., and Uflyand, I.E., Nanochastitsy metallov v polimerakh (Metal Nanoparticles in the Polymers), Moscow: Khimiya, 2000.

  18. Kuliev, M.M., Magerramov, A.M., Ismayilova, R.S., and Nabiev, A.A., Perspekt. Mater., 2015, no. 7, pp. 17–22.

  19. Gordienko, V.P., Vapirov, Yu.M., and Kovaleva, G.N., Plast. Massy, 2002, no. 4, pp. 6–9.

  20. Galikhanov, M.F., Gorokhovatskii, Yu.A., Gulyakova, A.A., Temnov, D.E., et al., Izv. Ross. Gos. Pedagog. Univ. im. A.I. Gertsena, 2011, no. 138, pp. 25–34.

  21. Chen, Ct., Fouracre, R.A., Banford, H.M., and Tedford, D.J., Radiat. Phys. Chem., 1991, vol. 37, no. 3, pp. 523–530.

    Google Scholar 

  22. Kuliyev, M.M. and Ismayilova, R.S., Surf. Eng. Appl. Electrochem., 2010, vol. 43, no. 3, pp. 447–451.

    Article  Google Scholar 

  23. Novikov, G.K., Smirnov, A.I., and Novikova, L.N., Uchenye zapiski Kazan.Univ., 2011, vol. 153, no. 4, pp. 143–149.

    Google Scholar 

  24. Pinchuk, L.S., Koretskaya, L.S., Shapovalov, V.A., Aleksandrova, T.I., et al., Vysokomol. Soedin.,Ser. B, 2003, vol. 45, no. 2, pp. 335–340.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. S. Ismayilova or M. M. Kuliev.

Ethics declarations

The authors declare to have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismayilova, R.S., Kuliev, M.M. Features of the Charge State of UHMWPE + α-SiO2 Nanocomposites. Surf. Engin. Appl.Electrochem. 56, 267–271 (2020). https://doi.org/10.3103/S1068375520030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520030060

Keywords:

Navigation