Skip to main content
Log in

On the Stability of Capillary Waves on the Surface of a Layer of Viscous Conductive Liquid on Metal Wire

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract—

The dispersion equation is derived analytically and in a linear approximation using the dimensionless amplitude of oscillations for capillary waves on the charged surface of a layer of viscous conductive liquid on a metal wire. The metal wire is shown to stabilize the capillary waves. The wire effect becomes substantial only at high values of the wire radius. The appearance of the electric charge on the liquid layer complicates the spectrum of the realizing motions of the liquid and quantitatively changes the values of the frequencies, increments, and decrements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. Grigor’ev, A.I., Petrushov, N.A., and Shiryaeva, S.O., Surf. Eng. Appl. Electrochem., 2013, vol. 49, no. 3, pp. 199–204.

    Article  Google Scholar 

  2. Cloupeau, M. and Prunet Foch, B., J. Electrostat., 1990, vol. 25, pp. 165–184.

    Article  Google Scholar 

  3. Jaworek, A. and Krupa, A., J. Aerosol Sci., 1999, vol. 30, no. 7, pp. 873–893.

    Article  Google Scholar 

  4. Kim, O.V. and Dunn, P.F., Langmuir, 2010, vol. 26, pp. 15807–15813.

    Article  Google Scholar 

  5. Tonks, L., Phys. Rev., 1935, vol. 48, pp. 562–568.

    Article  Google Scholar 

  6. Taylor, G.I. and McEwan, A.D., J. Fluid Mech., 1965, vol. 22, no. 1, pp. 1–15.

    Article  Google Scholar 

  7. Kim, H.H., Teramoto, Y., et al., J. Aerosol Sci., 2014, vol. 76, pp. 98–114.

    Article  Google Scholar 

  8. Pongrác, B., Kim, H.H., et al., J. Phys. D: Appl. Phys., 2014, vol. 47, no. 315202, pp. 1–10.

    Article  Google Scholar 

  9. Verdoolda, S., Agostinhoc, L.L.F., Yurterib, C.U., and Marijnissenb, J.C.M., J. Aerosol Sci., 2014, vol. 67, no. 2014, pp. 87–103.

  10. Park, I., Kim, S.B., Hong, S.W., and Kim, S.S., J. Aerosol. Sci., 2015, vol. 89, pp. 26–30.

    Article  Google Scholar 

  11. Frenkel’, Ya.I., Zh. Eksp. Teor. Fiz., 1936, vol. 6, no. 4, pp. 348–350.

    Google Scholar 

  12. Levich, V.G., Fiziko-khimicheskaya gidrodinamika (Physical-Chemical Hydrodynamics), Moscow: Fizmatgiz, 1959.

  13. Shiryaeva, S.O., Lesnugina, D.E., Grigor’ev, A.I., and Petrushov, N.A., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 5, pp. 443–448.

    Article  Google Scholar 

  14. Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, 1965.

    MATH  Google Scholar 

  15. Entov, V.M. and Yarin, A.L., Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza, 1984, vol. 17, no. 112–197.

  16. Nayfeh, A.H., Perturbation Methods, New York: Wiley, 1973.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Shiryaeva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Baznat

APPENDIX

APPENDIX

The dispersion equation of the problem and its transformation in the limits of minor viscosity:

$$\begin{gathered} {{\alpha }^{2}} + \frac{{2\alpha \nu {{k}^{2}}}}{{{{I}_{0}}(kR)}}\frac{{\left( {I_{1}^{'}(kR) - \frac{{2kl}}{{({{k}^{2}} + {{l}^{2}})}}\frac{{{{I}_{1}}(kR)}}{{{{I}_{1}}(lR)}}I_{1}^{'}(lR) + {{F}_{2}}(k,l,{{R}_{0}},R)} \right)}}{{(1 + {{F}_{1}}(k,l,{{R}_{0}},R))}} \\ = \left[ {\frac{{\sigma k}}{{\rho {{R}^{2}}}}(1 - {{k}^{2}}{{R}^{2}}) + \frac{{4\pi {{\chi }^{2}}}}{\rho }\frac{k}{R}\left( {kR\frac{{{{K}_{1}}(kR)}}{{{{K}_{0}}(kR)}} - 1} \right)} \right]\frac{{{{I}_{1}}(kR)}}{{{{I}_{0}}(kR)}}\frac{{({{l}^{2}} - {{k}^{2}})}}{{({{l}^{2}} + {{k}^{2}})}}\frac{{F(k,l,{{R}_{0}},R)}}{{(1 + {{F}_{1}}(k,l,{{R}_{0}},R))}}; \\ \end{gathered} $$
(A.1)

where

$$\begin{gathered} F(k,l,{{R}_{0}},R) \\ = \left( {1 + {{G}_{{11}}}(k,l,{{R}_{0}})\frac{{{{K}_{1}}(kR)}}{{{{I}_{1}}(kR)}}} \right. - \frac{{{{K}_{1}}(lR)}}{{{{I}_{1}}(lR)}}({{G}_{{22}}}(k,l,{{R}_{0}}) \\ - \,\,({{G}_{{12}}}(k,l,{{R}_{0}}){{G}_{{21}}}(k,l,{{R}_{0}}) \\ \left. { - \,\,{{G}_{{11}}}(k,l,{{R}_{0}}){{G}_{{22}}}(k,l,{{R}_{0}}))\left. {\frac{{{{K}_{1}}(kR)}}{{{{I}_{1}}(kR)}}} \right)} \right); \\ {{F}_{1}}(k,l,{{R}_{0}},R) = \left( {\frac{{2{{k}^{2}}}}{{\left( {{{l}^{2}} + {{k}^{2}}} \right)}}} \right.\left( {{{K}_{1}}(kR) + \frac{{{{I}_{1}}(kR)}}{{{{I}_{0}}(kR)}}{{K}_{0}}(kR)} \right) \\ \times \,\,\frac{1}{{{{I}_{1}}(lR)}}{{G}_{{12}}}(k,l,{{R}_{0}}) - \frac{{{{K}_{0}}(kR)}}{{{{I}_{0}}(kR)}} \\ \times \,\,\left( {{{G}_{{11}}}(k,l,{{R}_{0}}) + \frac{{{{K}_{1}}(lR)}}{{{{I}_{1}}(lR)}}\left( {{{G}_{{12}}}(k,l,{{R}_{0}}){{G}_{{21}}}(k,l,{{R}_{0}})} \right.} \right. \\ + \,\,\left. {\left. {\left. {\left( {\frac{{{{I}_{0}}(kR)}}{{{{K}_{0}}(kR)}} - {{G}_{{11}}}(k,l,{{R}_{0}}){{G}_{{22}}}(k,l,{{R}_{0}})} \right)} \right)} \right)} \right); \\ \end{gathered} $$
$$\begin{gathered} {{F}_{2}}(k,l,{{R}_{0}},R) = \frac{{{{k}^{2}}}}{{\left( {{{l}^{2}} + {{k}^{2}}} \right)}} \\ \times \,\,\left( {2{{I}_{1}}(kR){{K}_{1}}(kR)\left( {\frac{{I_{1}^{'}(kR)}}{{{{I}_{1}}(kR)}} - \frac{{K_{1}^{'}(kR)}}{{{{K}_{1}}(kR)}}} \right)\frac{{{{G}_{{12}}}(k,l,{{R}_{0}})}}{{{{I}_{1}}(lR)}}} \right. \\ + \,\,\left( {1 + \frac{{{{l}^{2}}}}{{{{k}^{2}}}}} \right)\frac{l}{k}{{K}_{1}}(lR)\left( {\frac{{I_{1}^{'}(lR)}}{{{{I}_{1}}(lR)}} - \frac{{K_{1}^{'}(lR)}}{{{{K}_{1}}(lR)}}} \right){{G}_{{21}}}(k,l,{{R}_{0}}) \\ \end{gathered} $$
$$\begin{gathered} + \,\,{{I}_{1}}(kR)\frac{{{{K}_{1}}(lR)}}{{{{I}_{1}}(lR)}}\left( {2\frac{l}{k}\frac{{K_{1}^{'}(lR)}}{{{{K}_{1}}(lR)}} - \left( {1 + \frac{{{{l}^{2}}}}{{{{k}^{2}}}}} \right)\frac{{I_{1}^{'}(kR)}}{{{{I}_{1}}(kR)}}} \right) \\ \times \,\,{{G}_{{22}}}(k,l,{{R}_{0}}) - {{K}_{1}}(lR) \\ \end{gathered} $$
$$ \times \,\,\left( {2\frac{l}{k}\frac{{I_{1}^{'}(lR)}}{{{{I}_{1}}(lR)}} - \left( {1 + \frac{{{{l}^{2}}}}{{{{k}^{2}}}}} \right)\frac{{K_{1}^{'}(kR)}}{{{{K}_{1}}(kR)}}} \right){{G}_{{11}}}(k,l,{{R}_{0}})$$
$$\begin{gathered} + \,\,{{K}_{1}}(kR)\frac{{{{K}_{1}}(lR)}}{{{{I}_{1}}(lR)}}\left( {2\frac{l}{k}\frac{{K_{1}^{'}(lR)}}{{{{K}_{1}}(lR)}} - \left( {1 + \frac{{{{l}^{2}}}}{{{{k}^{2}}}}} \right)\frac{{K_{1}^{'}(kR)}}{{{{K}_{1}}(kR)}}} \right) \\ \left. {\frac{{^{{}}}}{{_{{}}}} \times \,\,\left( {{{G}_{{11}}}{{G}_{{22}}} - {{G}_{{12}}}{{G}_{{21}}}} \right)} \right). \\ \end{gathered} $$
$$\begin{gathered} {{G}_{{11}}}(k,l,{{R}_{0}}) = \frac{{{{I}_{0}}(k{{R}_{0}})}}{{{{K}_{0}}(k{{R}_{0}})H(k,l,{{R}_{0}})}} \\ \times \,\,\left( {1 + \frac{l}{k}\frac{{{{K}_{0}}(l{{R}_{0}})}}{{{{K}_{1}}(l{{R}_{0}})}}\frac{{{{I}_{1}}(k{{R}_{0}})}}{{{{I}_{0}}(k{{R}_{0}})}}} \right); \\ \end{gathered} $$
$$\begin{gathered} {{G}_{{12}}}(k,l,{{R}_{0}}) = \frac{l}{k}\frac{{{{I}_{0}}(l{{R}_{0}})}}{{{{K}_{0}}(k{{R}_{0}})H(k,l,{{R}_{0}})}} \\ \times \,\,\left( {1 + \frac{{{{K}_{0}}(l{{R}_{0}})}}{{{{K}_{1}}(l{{R}_{0}})}}\frac{{{{I}_{1}}(k{{R}_{0}})}}{{{{I}_{0}}(k{{R}_{0}})}}} \right); \\ \end{gathered} $$
$$\begin{gathered} {{G}_{{21}}}(k,l,{{r}_{0}}) = \frac{{{{I}_{1}}(k{{R}_{0}})}}{{{{K}_{1}}(l{{R}_{0}})H(k,l,{{R}_{0}})}} \\ \times \,\,\left( {1 + \frac{{{{K}_{1}}(k{{R}_{0}})}}{{{{K}_{0}}(k{{R}_{0}})}}\frac{{{{I}_{0}}(k{{R}_{0}})}}{{{{I}_{1}}(k{{R}_{0}})}}} \right); \\ \end{gathered} $$
$$\begin{gathered} {{G}_{{22}}}(k,l,{{R}_{0}}) = \frac{{{{I}_{1}}(l{{R}_{0}})}}{{{{K}_{1}}(l{{R}_{0}})H(k,l,{{R}_{0}})}} \\ \times \,\,\left( {1 + \frac{l}{k}\frac{{{{K}_{1}}(k{{R}_{0}})}}{{{{K}_{0}}(k{{R}_{0}})}}\frac{{{{I}_{0}}(l{{R}_{0}})}}{{{{I}_{1}}(l{{R}_{0}})}}} \right); \\ \end{gathered} $$
$$H(k,l,{{R}_{0}}) = \left( {1 - \frac{l}{k}\frac{{{{K}_{0}}(l{{R}_{0}})}}{{{{K}_{1}}(l{{R}_{0}})}}\frac{{{{K}_{1}}(k{{R}_{0}})}}{{{{K}_{0}}(k{{R}_{0}})}}} \right).$$

Since the dispersion equation (5) is too complicated for the numerical solution (and impossible for the analytical) we will find the limit for the minor viscosity of this equation. For this purpose, let us use expanding formula

$$\begin{gathered} l = \sqrt {{{k}^{2}} + \frac{\alpha }{\nu }} \\ = k\sqrt {\frac{\alpha }{{\nu {{k}^{2}}}}} \left( {1 + \frac{1}{2}\frac{{\nu {{k}^{2}}}}{\alpha } - \frac{1}{8}{{{\left( {\frac{{\nu {{k}^{2}}}}{\alpha }} \right)}}^{2}} + {\text{O}}({{\nu }^{3}})} \right) \\ \end{gathered} $$

and the asymptotic formulas for the modified Bessel functions [14]:

$$\begin{gathered} {{I}_{n}}(z) = \frac{{\exp (z)}}{{\sqrt {2\pi z} }} \\ \times \,\,\left( {1 - \frac{{4{{n}^{2}} - 1}}{{8z}} + \frac{{\left( {4{{n}^{2}} - 1} \right)\left( {4{{n}^{2}} - 9} \right)}}{{2!{{{\left( {8z} \right)}}^{2}}}} + {\text{O}}\left( {\frac{1}{{{{z}^{3}}}}} \right)} \right); \\ {{K}_{n}}(z) = \sqrt {\frac{\pi }{{2z}}} \exp ( - z) \\ \times \,\,\left( {1 + \frac{{4{{n}^{2}} - 1}}{{8z}} + \frac{{\left( {4{{n}^{2}} - 1} \right)\left( {4{{n}^{2}} - 9} \right)}}{{2!{{{\left( {8z} \right)}}^{2}}}} + {\text{O}}\left( {\frac{1}{{{{z}^{3}}}}} \right)} \right); \\ \end{gathered} $$
$$\begin{gathered} I_{n}^{'}(z) = \frac{{\exp (z)}}{{\sqrt {2\pi z} }} \\ \times \,\,\left( {1 - \frac{{4{{n}^{2}} + 3}}{{8z}} + \frac{{\left( {4{{n}^{2}} - 1} \right)\left( {4{{n}^{2}} + 15} \right)}}{{2!{{{\left( {8z} \right)}}^{2}}}} + {\text{O}}\left( {\frac{1}{{{{z}^{3}}}}} \right)} \right); \\ \end{gathered} $$
$$\begin{gathered} K_{n}^{'}(z) = - \sqrt {\frac{\pi }{{2z}}} \exp ( - z) \\ \times \,\,\left( {1 + \frac{{4{{n}^{2}} + 3}}{{8z}} + \frac{{\left( {4{{n}^{2}} - 1} \right)\left( {4{{n}^{2}} + 15} \right)}}{{2!{{{\left( {8z} \right)}}^{2}}}} + {\text{O}}\left( {\frac{1}{{{{z}^{3}}}}} \right)} \right); \\ \end{gathered} $$

where О is the order symbol [16]. As a result, for the Bessel functions that enter dispersion equation (5), we will obtain the following expansions:

$$\begin{gathered} {{I}_{0}}(l{{R}_{0}}) \sim \frac{1}{{\sqrt {2\pi } }}\frac{1}{{\sqrt {k{{R}_{0}}} }}\exp \left( {\sqrt {\frac{\alpha }{{\nu {{k}^{2}}}}} } \right){{\left( {\frac{{\nu {{k}^{2}}}}{\alpha }} \right)}^{{\frac{1}{4}}}} \\ \times \,\,\left( {1 + \frac{1}{8}\frac{1}{{k{{R}_{0}}}}\sqrt {\frac{{\nu {{k}^{2}}}}{\alpha }} - \frac{1}{4}\left( {1 - \frac{9}{{32}}\frac{1}{{{{k}^{2}}R_{0}^{2}}}} \right)\frac{{\nu {{k}^{2}}}}{\alpha } + {\text{O}}\left( {{{\nu }^{{\frac{3}{2}}}}} \right)} \right); \\ \end{gathered} $$
$$\begin{gathered} {{I}_{1}}(l{{R}_{0}}) \sim \frac{1}{{\sqrt {2\pi } }}\frac{1}{{\sqrt {k{{r}_{0}}} }}\exp \left( {k{{R}_{0}}\sqrt {\frac{\alpha }{{\nu {{k}^{2}}}}} } \right){{\left( {\frac{{\nu {{k}^{2}}}}{\alpha }} \right)}^{{\frac{1}{4}}}} \\ \times \,\,\left( {1 - \frac{3}{8}\frac{1}{{k{{R}_{0}}}}\sqrt {\frac{{\nu {{k}^{2}}}}{\alpha }} - \frac{1}{4}\left( {1 + \frac{{15}}{{32}}\frac{1}{{{{k}^{2}}R_{0}^{2}}}} \right)\frac{{\nu {{k}^{2}}}}{\alpha } + {\text{O}}\left( {{{\nu }^{{\frac{3}{2}}}}} \right)} \right); \\ \end{gathered} $$
$$\begin{gathered} {{K}_{0}}(l{{R}_{0}}) \sim \sqrt {\frac{\pi }{2}} \frac{1}{{\sqrt {k{{R}_{0}}} }}\exp \left( { - k{{R}_{0}}\sqrt {\frac{\alpha }{{\nu {{k}^{2}}}}} } \right){{\left( {\frac{{\nu {{k}^{2}}}}{\alpha }} \right)}^{{\frac{1}{4}}}} \\ \times \,\,\left( {1 - \frac{1}{8}\frac{1}{{k{{R}_{0}}}}\sqrt {\frac{{\nu {{k}^{2}}}}{\alpha }} - \frac{1}{4}\left( {1 - \frac{9}{{32}}\frac{1}{{{{k}^{2}}R_{0}^{2}}}} \right)\frac{{\nu {{k}^{2}}}}{\alpha } + {\text{O}}\left( {{{\nu }^{{\frac{3}{2}}}}} \right)} \right); \\ \end{gathered} $$
$$\begin{gathered} {{K}_{1}}(l{{R}_{0}}) \sim \sqrt {\frac{\pi }{2}} \frac{1}{{\sqrt {k{{R}_{0}}} }}\exp \left( { - k{{R}_{0}}\sqrt {\frac{\alpha }{{\nu {{k}^{2}}}}} } \right){{\left( {\frac{{\nu {{k}^{2}}}}{\alpha }} \right)}^{{\frac{1}{4}}}} \\ \times \,\,\left( {1 + \frac{3}{8}\frac{1}{{k{{R}_{0}}}}\sqrt {\frac{{\nu {{k}^{2}}}}{\alpha }} - \frac{1}{4}\left( {1 + \frac{{15}}{{32}}\frac{1}{{{{k}^{2}}R_{0}^{2}}}} \right)\frac{{\nu {{k}^{2}}}}{\alpha } + {\text{O}}\left( {{{\nu }^{{\frac{3}{2}}}}} \right)} \right); \\ \end{gathered} $$
$$\begin{gathered} I_{1}^{'}(l{{R}_{0}}) \sim \frac{1}{{\sqrt {2\pi } }}\frac{1}{{\sqrt {k{{R}_{0}}} }}\exp \left( {k{{R}_{0}}\sqrt {\frac{\alpha }{{\nu {{k}^{2}}}}} } \right){{\left( {\frac{{\nu {{k}^{2}}}}{\alpha }} \right)}^{{\frac{1}{4}}}} \\ \times \,\,\left( {1 - \frac{7}{8}\frac{1}{{k{{R}_{0}}}}\sqrt {\frac{{\nu {{k}^{2}}}}{\alpha }} - \frac{1}{4}\left( {1 + \frac{{57}}{{32}}\frac{1}{{{{k}^{2}}R_{0}^{2}}}} \right)\frac{{\nu {{k}^{2}}}}{\alpha } + {\text{O}}\left( {{{\nu }^{{\frac{3}{2}}}}} \right)} \right); \\ \end{gathered} $$
$$\begin{gathered} K_{1}^{'}(l{{R}_{0}}) \sim - \sqrt {\frac{\pi }{2}} \frac{1}{{\sqrt {k{{R}_{0}}} }}\exp \left( { - k{{R}_{0}}\sqrt {\frac{\alpha }{{\nu {{k}^{2}}}}} } \right){{\left( {\frac{{\nu {{k}^{2}}}}{\alpha }} \right)}^{{\frac{1}{4}}}} \\ \times \,\,\left( {1 + \frac{7}{8}\frac{1}{{k{{R}_{0}}}}\sqrt {\frac{{\nu {{k}^{2}}}}{\alpha }} - \frac{1}{4}\left( {1 + \frac{{57}}{{32}}\frac{1}{{{{k}^{2}}R_{0}^{2}}}} \right)\frac{{\nu {{k}^{2}}}}{\alpha } + {\text{O}}\left( {{{\nu }^{{\frac{3}{2}}}}} \right)} \right). \\ \end{gathered} $$

Using the written expansions, we will get the following dispersion equation in the limit of the minor viscosity:

$$\begin{gathered} {{\alpha }^{2}} + 2\alpha \nu {{k}^{2}}\left[ {1 - L(k,{{R}_{0}},R)} \right] - L(k,{{R}_{0}},R) \\ \times \,\,\left[ {\frac{{\sigma {{k}^{2}}}}{{\rho R}}(1 - {{k}^{2}}{{R}^{2}}) + 4\pi \mu _{0}^{2}\frac{{{{k}^{2}}}}{\rho }\left( {kR\frac{{{{K}_{1}}(kR)}}{{{{K}_{0}}(kR)}} - 1} \right)} \right] \\ \times \,\,\left( {1 - \sqrt {\frac{{\nu {{k}^{2}}}}{{\alpha }}} } \right.\left( {{{g}_{1}} - {{d}_{1}}} \right) - \frac{{\nu {{k}^{2}}}}{{\alpha }}\left( {{{g}_{2}}\left( {k,{{R}_{0}},R} \right)} \right. \\ \left. {\frac{{^{{^{{}}}}}}{{_{{_{{}}}}}} + \,\,\left. {{{g}_{1}}\left( {k,{{R}_{0}},R} \right){{d}_{1}}\left( {k,{{R}_{0}},R} \right) - {{d}_{2}}\left( {k,{{R}_{0}},R} \right)} \right)} \right) = 0; \\ \end{gathered} $$
$$L(k,{{R}_{0}},R) \equiv \frac{1}{{kR}}\frac{{{{I}_{1}}(kR)}}{{{{I}_{0}}(kR)}}\frac{{\left( {1 - \frac{{{{I}_{1}}(k{{R}_{0}})}}{{{{I}_{1}}(kR)}}\frac{{{{K}_{1}}(kR)}}{{{{K}_{1}}(k{{R}_{0}})}}} \right)}}{{\left( {1 + \frac{{{{I}_{1}}(k{{R}_{0}})}}{{{{I}_{0}}(kR)}}\frac{{{{K}_{0}}(kR)}}{{{{K}_{1}}(k{{R}_{0}})}}} \right)}};$$
$${{g}_{1}}(k,{{R}_{0}},R) \equiv \frac{{{{I}_{0}}(k{{R}_{0}})}}{{{{I}_{1}}(kR)}}\frac{{{{K}_{1}}(kR)}}{{{{K}_{1}}(k{{R}_{0}})}}\frac{{\left( {1 + \frac{{{{I}_{1}}(k{{R}_{0}})}}{{{{I}_{0}}(k{{R}_{0}})}}\frac{{{{K}_{0}}(k{{R}_{0}})}}{{{{K}_{1}}(k{{R}_{0}})}}} \right)}}{{\left( {1 - \frac{{{{I}_{1}}(k{{R}_{0}})}}{{{{I}_{1}}(kR)}}\frac{{{{K}_{1}}(kR)}}{{{{K}_{1}}(k{{R}_{0}})}}} \right)}};$$
$${{g}_{2}}(k,{{R}_{0}},R) = 2 + \frac{{{{g}_{1}}(k,{{R}_{0}},R)}}{{h(k{{R}_{0}})}};$$
$$h(k{{R}_{0}}) \equiv \left( {\frac{{{{K}_{0}}(k{{R}_{0}})}}{{{{K}_{1}}(k{{R}_{0}})}} + \frac{1}{{2k{{R}_{0}}}}} \right);$$
$${{d}_{1}}(k,{{R}_{0}},R) = \frac{{{{I}_{1}}(k{{R}_{0}})}}{{{{I}_{0}}(kR)}}\frac{{{{K}_{0}}(kR)}}{{{{K}_{1}}(k{{R}_{0}})}}\frac{{\left( {\frac{{{{I}_{0}}(k{{R}_{0}})}}{{{{I}_{1}}(k{{R}_{0}})}} + \frac{{{{K}_{0}}(k{{R}_{0}})}}{{{{K}_{1}}(k{{R}_{0}})}}} \right)}}{{\left( {1 + \frac{{{{I}_{1}}(k{{R}_{0}})}}{{{{I}_{0}}(kR)}}\frac{{{{K}_{0}}(kR)}}{{{{K}_{1}}(k{{R}_{0}})}}} \right)}};$$
$${{d}_{2}}(k,{{R}_{0}},R) = d_{1}^{2}(k,{{R}_{0}},R)\left( {1 - h(k{{R}_{0}})} \right).$$

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiryaeva, S.O., Grigor’ev, A.I. On the Stability of Capillary Waves on the Surface of a Layer of Viscous Conductive Liquid on Metal Wire. Surf. Engin. Appl.Electrochem. 56, 319–326 (2020). https://doi.org/10.3103/S1068375520030163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520030163

Keywords:

Navigation