Skip to main content
Log in

Electrochemical Study of External Corrosion of Three API Steels Exposed to Seawater and Sediment from Seabed of the Gulf of México

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

An electrochemical study of three API steels: X52, X65, and X80, exposed to seawater and sediment from seabed is presented. Two seabed samples were collected at 60 meters depth near a platform (seabed A) and at a distance of 500 m (seabed B) from the same platform of the Sonda of Campeche, México. In both samples, the seawater and sediment were separated in order to characterize their corrosiveness in an electrochemical cell of 100 mL. The physicochemical and electrochemical responses were determined in the water and sediment. Electrochemical impedance spectra and polarization curves for both water and sediment from the two seabed samples were carried out. A cathodic protection analysis for the three steel surfaces exposed to sediment was proposed based on cathodic polarization curves. Corrosion rates for the three studied low carbon steels could be attributed to their physicochemical properties and low temperatures from a specific seabed area. Thus, high susceptibility to corrosion was identified when three API steels were in contact with seabed B. A corrosive gas fixation and discharges of produced water into the seabed that are able to conduct the corrosion process were suggested. In order to study the activation energies of corrosion for the API steels exposed to sediment, a low temperature dependence was taken into account using the Arrhenius equation and Rct values from impedance data. Activation energy values were Ea = 23.06, 31.7, and 43.2 J mol–1 in X52, X80, and X65 steels, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. de Laune, R.D., Devai, I., Hou, A., and Jugsujinda, A., Soil Sediment Contam., 2008, vol. 17, pp. 98–106.

    Article  Google Scholar 

  2. Pi, Y., Ye, Q., Jiang, H., Wang, P., et al., Geomicrobiol. J., 2009, vol. 26, pp. 227–237.

    Article  Google Scholar 

  3. Flood, M., Frabutt, D., Floyd, D., Powers, A., et al., Environ. Technol., 2015, vol. 36, pp. 124–135.

    Article  Google Scholar 

  4. Ye, G., Wang, S., Jiang, L., Xiao, X., et al., Geomicrobiol. J., 2009, vol. 26, pp. 370–381.

    Article  Google Scholar 

  5. Wang, Y., Wharton, J.A., and Shenoi, R.A., Corros. Sci., 2014, vol. 86, pp. 42–60.

    Article  Google Scholar 

  6. Tang, X., Xue, Z., Yang, Q., Li, T., et al., Drying Technol., 2017, vol. 35, pp. 1696–1710.

    Article  Google Scholar 

  7. Zhang, J., Liu, J., Hu, Q., Huang, F., et al., Anti-Corros. Methods Mater., 2015, vol. 62, pp. 103–108.

    Article  Google Scholar 

  8. NRF-014-PEMEX,Inspection,Evaluation and Maintenance for Subsea Pipelines, 2013.

  9. NRF-026-PEMEX, Protection with Anticorrosive Coatings for Buried and Submerged Pipelines, 2001.

  10. NACE RP-0394: Application, Performance, and Quality Control of Plant-Applied Single Layer Fusion-Bonded Epoxy External Pipe Coating, Houston, TX: NACE Int., 2002.

  11. Quej-Aké, L., Contreras, A., and Aburto, J. Materials Characterization, Pérez-Campos, R., Contreras-Cuevas, A., and Esparza-Muñoz, R., Eds., Glanz: Springer-Verlag, 2017.

  12. Quej-Ake, L. and Contreras, A., Anti-Corros. Methods Mater., 2018, vol. 65, pp. 97–106.

    Article  Google Scholar 

  13. Ribeiro, A.P., Graciano, A.M., dos Santos, J.O., de Lima, P.A., et al., Anti-Corros. Methods Mater., 2014, vol. 25, pp. 476–479.

    Google Scholar 

  14. Mills, G. and Fones, G., Anti-Corros. Methods Mater., 2012, vol. 32, pp. 17–28.

    Google Scholar 

  15. Wang, D. and Abriak, N.E., Mar. Georesour. Geotechnol., 2015, vol. 33, pp. 419–428.

    Article  Google Scholar 

  16. González-Lozano, M.C., Méndez-Rodríguez, L.C., Maeda-Martínez, A.M., Murugan, G., et al., J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng., 2010, vol. 45, pp. 121–127.

    Article  Google Scholar 

  17. Örnek, D., Wood, T.K., Hsu, C.H., and Mansfeld, F., Corros. Sci., 2002, vol. 44, pp. 2291–2301.

    Article  Google Scholar 

  18. Beech, I.B. and Campbell, S.A., Electrochim. Acta, 2008, vol. 54, pp. 14–21.

    Article  Google Scholar 

  19. ASTM D1141-98, Standard Practice for the Preparation of Substitute Ocean Water, West Conshohocken, PA: ASTM Int., 2013.

  20. Sosa, E., Alamilla, J.L., Contreras, A., and Liu, H.B., Mexican Copyright no. 03-2015-120212493500-01, 2015.

  21. Liu, H.B., Sosa, E., Alamilla, J.L., Contreras, A., and Quej-Ake, L.M., Mexican Copyright no. 03-2015-112512110000-01, 2015.

  22. Quej-Ake, L.M., Marín Cruz, J., and Contreras, A., Anti-Corros. Methods Mater., 2017, vol. 64, pp. 61–68.

    Article  Google Scholar 

  23. ASTM E92, Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, West Conshohocken, PA: ASTM Int., 2017.

  24. ASTM E8/E8M, Standard Test Methods for Tension Testing of Metallic Materials, West Conshohocken, PA: ASTM Int., 2016.

  25. Wang, J.Q., Atrens, A., Cousens, D.R., and Kinaev, N., J. Mater. Sci., 1999, vol. 34, pp. 1721–1728.

    Article  Google Scholar 

  26. ASTM G51-95, Standard Test Method for Measuring pH of Soil for Use in Corrosion Testing, West Conshohocken, PA: ASTM Int., 2000.

  27. ASTM G 200-09, Standard Test Method for Measurement of Oxidation-Reduction Potential (ORP) of Soil, West Conshohocken, PA: ASTM Int., 2014.

  28. ASTM D4959, Standard Test Method for Determination of Water (Moisture) Content of Soil by Directs Heating, West Conshohocken, PA: ASTM Int., 2007.

  29. Boukamp, B.A., Equivalent Circuit: (equivcrt.pas). Users Manual, Enschede: Univ. of Twente, 1989, 2nd ed.

    Google Scholar 

  30. Quej-Ake, L.M., Cabrera-Sierra, R., Arce-Estrada, E.M., and Marín-Cruz, J., Int. J. Electrochem. Sci., 2013, vol. 8, pp. 924–937

    Google Scholar 

  31. NOM-007-SECRE, Natural Gas Transportation, 2010.

  32. ISO 15589-2, Petroleum and Natural Gas Industries-Cathodic Protection of Pipeline Transportation Systems, Part 2: Offshore Pipelines, Geneva: Int. Stand. Org., 2012.

  33. ASTM G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electro-Chemical Measurements, West Conshohocken, PA: ASTM Int., 2004.

  34. NRF-013-PEMEX, Design of Subsea Lines from Gulf of Mexico, 2009.

  35. de Oliveira Júnior, S. and Van Hombeek, M., Energy Convers. Manage., 1997, vol. 38, pp. 1577–1584.

    Article  Google Scholar 

  36. da Silva, J.A.M. and de Oliveira Jr., S., Energy, 2018, vol. 147, pp. 757–766.

    Article  Google Scholar 

  37. Schifter, I., González-Macías, C., Salazar-Coria, L., Sánchez-Reyna, G., et al., Environ. Earth Sci., 2015, vol. 74, pp. 5813–5826.

    Article  Google Scholar 

  38. Quej-Ake, L. and Contreras, A., Mater. Res. Soc. Symp. Proc., 2015, vol. 1766, pp. 415–426.

    Article  Google Scholar 

  39. Quej-Ake, L., Mireles, M., Galván-Martinez, R., and Contreras, A., Materials Characterization, Pérez-Campos, R., Contreras-Cuevas, A., and Esparza-Muñoz, R., Eds. Glanz: Springer-Verlag, 2015, pp. 101–116.

  40. Buljac, M., Bogner, D., Bralić, M., Periš, N., et al., Anal. Lett., 2014, vol. 47, pp. 1952–1964.

    Article  Google Scholar 

  41. Rosliza, R., Senin, H.B., and Wan-Nik, W.B., Colloids Surf., A, 2008, vol. 312, pp. 185–189.

    Article  Google Scholar 

  42. Vera, R., Verdugo, P., Orellana, M., and Muñoz, E., Corros. Sci., 2010, vol. 52, pp. 3803–3810.

    Article  Google Scholar 

  43. Schifter, I., González-Macías, C., Salazar-Coria, L., Sánchez-Reyna, G., et al., Environ. Monit. Assess., 2015, vol. 187, pp. 699–723.

    Article  Google Scholar 

  44. Bard, A.J. and Faulkner, L.R., Electrochemical Methods: Fundamentals and Applications, New York: Wiley, 1980.

    Google Scholar 

  45. NACE standard TM0497, Measurement Techniques Related to Criteria for Cathodic Protection on Underground or Submerged Metallic Piping Systems, Houston, TX: NACE Int., 2002.

  46. Popova, A., Sokolova, E., Raicheva, S., and Christov, M., Corros. Sci., 2003, vol. 45, pp. 33–58.

    Article  Google Scholar 

  47. Bentiss, F., Traisnel, M., Chaibi, N., Mernari, B., et al., Corros. Sci., 2002, vol. 44, pp. 2271–2289.

    Article  Google Scholar 

  48. Rehim, S.S.A.E., Hassan, H.H., and Amin, M.A., Corros. Sci., vol. 46, pp. 5–25.

  49. Karakus, M., Sahin, M., and Bilgic, S., Mater. Chem. Phys., 2005, vol. 92, pp. 565–571.

    Article  Google Scholar 

  50. Negm, N.A., Al Sabagh, A.M., Migahed, M.A., Abdel Bary, H.M., et al., Corros. Sci., 2010, vol. 52, pp. 2122–2132.

    Article  Google Scholar 

  51. Kairi, N.I. and Kassim, J., Int. J. Electrochem. Sci., 2013, vol. 8, pp. 7138–7155.

    Google Scholar 

  52. Zdunek, A.D., Barlo, T.J., and Warfield, G., Mater. Perform., 1992, vol. 31, pp. 22–27.

    Google Scholar 

  53. Stansbury, E.E. and Buchanan, R.A., Fundamentals of Electrochemical Corrosion, Materials Park, OH: ASM Int., 2000.

    Google Scholar 

  54. Orazem, M.E. and Tribollet, B., Electrochem. Impedance Spectroscopy, New York: Wiley, 2008.

    Book  Google Scholar 

  55. Macdonald, J.R., Impedance Spectroscopy, New York, Wiley, 1987.

    Google Scholar 

  56. Quej-Ake, L.M., Contreras, A., Liu, H.B., Alamilla, J.L., and Sosa, E., Anti-Corros. Methods Mater., 2019, vol. 66, pp. 101–114.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Quej Ake.

Ethics declarations

The authors declare to have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quej Ake, L.M., Liu, H.B., Alamilla, J. et al. Electrochemical Study of External Corrosion of Three API Steels Exposed to Seawater and Sediment from Seabed of the Gulf of México. Surf. Engin. Appl.Electrochem. 56, 365–380 (2020). https://doi.org/10.3103/S1068375520030126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375520030126

Keywords:

Navigation