Skip to main content
Log in

Spatial segregative behaviors in robotic swarms using differential potentials

  • Published:
Swarm Intelligence Aims and scope Submit manuscript

Abstract

Segregative behaviors, in which individuals with common characteristics are placed together and set apart from other groups, are commonly found in nature. In swarm robotics, these behaviors can be important in different tasks that require a heterogeneous group of robots to be divided in homogeneous sets according to their physical (sensors, actuators) or logical (algorithms) capabilities. In this paper, we propose a controller that can spatially segregate a swarm of robots in two specific ways: clusters and concentric rings. By segregation, we mean that the swarm is partitioned in groups, with similar robots belonging to a same group, and these groups are spatially separated from each other. We achieve this by adapting and extending the differential potential concept, an abstraction of the mechanism by which cells achieve segregation. We present stability analysis and perform simulated experiments in 2D and 3D spaces in order to show the robustness of the proposed controller. Experiments with a limited number of real robots are also presented as a proof of concept. Results show that our approach allows a swarm of heterogeneous robots to segregate in a stable, compact, and collision-free fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Situations in which the size of the groups is unbalanced can lead to non-segregated states. As will be discussed in Sect. 4, we observed these situations when the size of one group is less or equal to 20% the size of the others

  2. Typically, the e-puck camera system can acquire a 40x40 subsampled color image at 4 frames per second. The infrared is able to reliably detect objects within a 6cm range.

References

  • Ame, J.-M., Rivault, C., & Deneubourg, J.-L. (2004). Cockroach aggregation based on strain odour recognition. Animal Behaviour, 68, 793–801. https://doi.org/10.1016/j.anbehav.2004.01.009.

    Article  Google Scholar 

  • Bajaj, S., & Bopardikar, S. D. (2019). Dynamic boundary guarding against radially incoming targets. In Proceedings of the IEEE 58th Conference on Decision and Control (CDC) (pp. 4804–4809). IEEE. https://doi.org/10.1109/CDC40024.2019.9028868.

  • Barciś, A., Barciś, M., & Bettstetter, C. (2019). Robots that sync and swarm: A proof of concept in ROS 2. In International symposium on multi-robot and multi-agent systems (MRS) (pp. 98–104). IEEE. https://doi.org/10.1109/MRS.2019.8901095.

  • Chen, J., Gauci, M., Price, M. J., & Groß, R. (2012). Segregation in swarms of e-puck robots based on the brazil nut effect. In Proceedings of the 11th international conference on autonomous agents and multiagent systems, IFAAMAS (pp. 163–170). https://doi.org/10.5555/2343576.2343599.

  • Chen, Z., Liao, H., & Chu, T. (2012b). Aggregation and splitting in self-driven swarms. Physica A: Statistical Mechanics and its Applications, 391(15), 3988–3994.

    Article  Google Scholar 

  • Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G. A., Burgard, W., Kavraki, L. E., et al. (2005). Principles of robot motion: Theory, algorithms, and implementations. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Coppola, M., Guo, J., Gill, E., & de Croon, G. C. H. E. (2019). Provable self-organizing pattern formation by a swarm of robots with limited knowledge. Swarm Intelligence, 13(1), 59–94. https://doi.org/10.1007/s11721-019-00163-0.

    Article  Google Scholar 

  • Cruz, N. B., Nedjah, N., & de Macedo Mourelle, L. (2015). Efficient spacial clustering in swarm robotics. In Computational science and its applications—ICCSA (vol 9156, pp. 14–27). Berlin: Springer. https://doi.org/10.1007/978-3-319-21407-8_2.

  • de la Croix, J.-P., & Egerstedt, M. (2013). A separation signal for heterogeneous networks. In 51st Annual Allerton Conference on Communication, Control, and Computing (pp. 254–261). IEEE. https://doi.org/10.1109/Allerton.2013.6736532.

  • Deneubourg, J. L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., & Chrétien, L. (1991). The dynamics of collective sorting robot-like ants and ant-like robots. In From animals to animats: Proceedings of the 1st International Conference on Simulation of Adaptive Behavior (pp. 356–363). Cambridge: MIT Press.

  • Desai, J., Ostrowski, J., & Kumar, V. (1998). Controlling formations of multiple mobile robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (Vol. 4, pp. 2864–2869). IEEE. https://doi.org/10.1109/ROBOT.1998.680621.

  • Di Caro, G. A., Ducatelle, F., & Gambardella, L. (2012). A fully distributed communication-based approach for spatial clustering in robotic swarms. In Proceedings of the 2nd autonomous robots and multirobot systems workshop (ARMS), affiliated with the 11th international conference on autonomous agents and multiagent systems (AAMAS) (pp. 153–171). IFAAMAS.

  • Dorigo, M., et al. (2013). Swarmanoid: A novel concept for the study of heterogeneous robotic swarms. IEEE Robotics and Automation Magazine, 20(4), 60–71. https://doi.org/10.1109/MRA.2013.2252996.

    Article  MathSciNet  Google Scholar 

  • Dudek, G., Jenki, M., Milios, E., & Wilkes, D. (1996). A taxonomy for multi-agent robotics. Autonomous Robots, 3(4), 375–397.

    Article  Google Scholar 

  • Eduard, B., & Wilkinson, D. G. (2012). Molecular mechanisms of cell segregation and boundary formation in development and tumorigenesis. Cold Spring Harb Perspect Biol, 4(1), 1–14.

    Google Scholar 

  • Edwards, V., Rezeck, P., & Chaimowicz, L., Hsieh, A. M. (2016). Segregation of heterogeneous robotics swarms via convex optimization. In ASME 2016 Dynamic Systems and Control Conference. ASME, V001T03A001. https://doi.org/10.1115/DSCC2016-9653.

  • Ferreira Filho, E. B., & Pimenta, L. C. A. (2015). Segregating multiple groups of heterogeneous units in robot swarms using abstractions. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS) (pp. 401–406). IEEE. https://doi.org/10.1109/IROS.2015.7353404.

  • Ferreira Filho, E. B., & Pimenta, L. C. A. (2019). Abstraction based approach for segregation in heterogeneous robotic swarms. Robotics and Autonomous Systems, 122, 103295.

    Article  Google Scholar 

  • Ferreira Filho, E. B., Pimenta, L. C. A. (2019) Decentralized Radial Segregation in Heterogeneous Swarms of Robots. In Proceedings of the IEEE 58th Conference on Decision and Control (CDC) (pp. 5723–5728). IEEE.

  • Franks, N., & Sendova-Franks, A. (1992). Brood sorting by ants: Distributing the workload over the work-surface. Behavioral Ecology and Sociobiology, 30(2), 109–123.

    Article  Google Scholar 

  • Gazi, V., & Passino, K. M. (2011). Swarm stability and optimization (1st ed.). Berlin: Springer.

    Book  Google Scholar 

  • Gerkey, B. P., & Matarić, M. J. (2004). A formal analysis and taxonomy of task allocation in multi-robot systems. The International Journal of Robotics Research, 23(9), 939–954.

    Article  Google Scholar 

  • Groß, R., Magnenat, S., & Mondada, F. (2009). Segregation in swarms of mobile robots based on the brazil nut effect. In Proceedings of the IEEE international conference on intelligent robots and systems (IROS) (pp. 4349–4356). IEEE.

  • Hsieh, M. A., Kumar, V., & Chaimowicz, L. (2008). Decentralized controllers for shape generation with robotic swarms. Robotica, 26(5), 691–701. https://doi.org/10.1017/S0263574708004323.

    Article  Google Scholar 

  • Inácio, F. R., Macharet, D. G., & Chaimowicz, L. (2019). PSO-based strategy for the segregation of heterogeneous robotic swarms. Journal of Computational Science, 31, 86–94. https://doi.org/10.1016/j.jocs.2018.12.008.

    Article  Google Scholar 

  • Iwasa, M., Iida, K., & Tanaka, D. (2010). Hierarchical cluster structures in a one-dimensional swarm oscillator model. Physical Review E, 81(046), 220. https://doi.org/10.1103/PhysRevE.81.046220.

    Article  Google Scholar 

  • Khatib, O. (1985) Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (vol 2, pp. 500–505). IEEE.

  • Kumar, M., Garg, D., & Kumar, V. (2010). Segregation of Heterogeneous Units in a Swarm of Robotic Agents. IEEE Transactions on Automatic Control, 55(3), 743–748.

    Article  MathSciNet  Google Scholar 

  • Leonard, N., & Fiorelli, E. (2001). Virtual leaders, artificial potentials and coordinated control of groups. In Proceedings of the 40th IEEE conference on decision and control (pp. 2968–2973). IEEE.

  • Lien, J.-M., Bayazit, O., Sowell, R., Rodriguez, S., & Amato, N. (2004). Shepherding behaviors. In Proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 4159–4164). IEEE.

  • Marcolino, L., & Chaimowicz, L. (2005). No robot left behind: Coordination to overcome local minima in swarm navigation. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1904–1909). IEEE.

  • Marcolino, L., dos Passos, Y., de Souza, Á., Rodrigues, A., & Chaimowicz, L. (2017). Avoiding target congestion on the navigation of robotic swarms. Autonomous Robots, 41(6), 1297–1320. https://doi.org/10.1007/s10514-016-9577-x.

    Article  Google Scholar 

  • Mitrano, P., Burklund, J., Giancola, M., & Pinciroli, C. (2019). A minimalistic approach to segregation in robot swarms. In International symposium on multi-robot and multi-agent systems (MRS) (pp. 105–111). IEEE. https://doi.org/10.1109/MRS.2019.8901068.

  • Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S., Zufferey, J.-C., Floreano, D., & Martinoli, A. (2009). The e-puck, a robot designed for education in engineering. In Proceedings of the 9th conference on autonomous robot systems and competitions, IBCP (pp. 59–65).

  • O’Keeffe, K., & Bettstetter, C. (2019). A review of swarmalators and their potential in bio-inspired computing. In Proceedings of the SPIE 10982, micro- and nanotechnology sensors, systems, and applications XI, SPIE, 109822E. https://doi.org/10.1117/12.2518682.

  • O’Keeffe, K. P., Hong, H., & Strogatz, S. H. (2017). Oscillators that sync and swarm. Nature Communications, 8(1), 1504. https://doi.org/10.1038/s41467-017-01190-3.

    Article  Google Scholar 

  • O’Keeffe, K. P., Evers, J. H. M., & Kolokolnikov, T. (2018). Ring states in swarmalator systems. Physical Review E, 98(022), 203. https://doi.org/10.1103/PhysRevE.98.022203.

    Article  Google Scholar 

  • Olfati-Saber, R. (2006). Flocking for multi-agent dynamic systems: Algorithms and theory. IEEE Transactions on Automatic Control, 51(3), 401–420.

    Article  MathSciNet  Google Scholar 

  • Pimenta, L., Pereira, G., Michael, N., Mesquita, R., Bosque, M., Chaimowicz, L., et al. (2013). Swarm coordination based on smoothed particle hydrodynamics technique. IEEE Transactions on Robotics, 29(2), 383–399.

    Article  Google Scholar 

  • Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J., Wheeler, R., & Ng, A. Y. (2009). Ros: An open-source robot operating system. In ICRA workshop on open source software.

  • Reif, J. H., & Wang, H. (1999). Social potential fields: A distributed behavioral control for autonomous robots. Robotics and Autonomous Systems, 27(3), 171–194.

    Article  Google Scholar 

  • Reynolds, C. W. (1987). Flocks, herds, and schools: A distributed behavioral model. ACM SIGGRAPH Computer Graphics, 21(4), 25–34. https://doi.org/10.1145/37402.37406.

    Article  Google Scholar 

  • Ridley, M. (2003). Evolution (3rd ed.). Hoboken: Wiley.

    Google Scholar 

  • Rosato, A., Strandburg, K. J., Prinz, F., & Swendsen, R. H. (1987). Why the brazil nuts are on top: Size segregation of particulate matter by shaking. Physical Review Letters, 58(10), 1038–1040.

    Article  MathSciNet  Google Scholar 

  • Santos, V. G., Pimenta, L. C. A., & Chaimowicz, L. (2014). Segregation of multiple heterogeneous units in a robotic swarm. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 1112–1117). IEEE.

  • Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application. In Proceedings of the International Conference on Swarm Robotics (SAB) (pp. 10–20). Berlin: Springer. https://doi.org/10.1007/978-3-540-30552-1_2.

  • Spears, W. M., Spears, D. F., Hamann, J. C., & Heil, R. (2004). Distributed, physics-based control of swarms of vehicles. Autonomous Robots, 17(2), 137–162. https://doi.org/10.1023/B:AURO.0000033970.96785.f2.

    Article  Google Scholar 

  • St-Onge, D., Pinciroli, C., & Beltrame, G. (2018). Circle formation with computation-free robots shows emergent behavioural structure. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 5344-5349). IEEE.

  • Starnini, M., Frasca, M., & Baronchelli, A. (2016). Emergence of metapopulations and echo chambers in mobile agents. Scientific Reports, 6(1), 31,834. https://doi.org/10.1038/srep31834.

    Article  Google Scholar 

  • Steinberg, M. S. (1963). Reconstruction of tissues by dissociated cells. Science, 141, 401–408.

    Article  Google Scholar 

  • Tan, K.-H., & Lewis, M. (1996). Virtual structures for high-precision cooperative mobile robotic control. In Proceedings of the IEEE International Conference on Intelligent Robots and Systems (IROS) (pp. 132–139). IEEE.

  • Tanner, H., Pappas, G., & Kumar, V. (2004). Leader-to-formation stability. IEEE Transactions on Robotics and Automation, 20(3), 443–455.

    Article  Google Scholar 

  • Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2007). Flocking in fixed and switching networks. IEEE Transactions on Automatic Control, 52(5), 863–868.

    Article  MathSciNet  Google Scholar 

  • Zhao, S., Ramakrishnan, S., & Kumar, M. (2011). Density-based control of multiple robots. In Proceedings of the American Control Conference (ACC) (pp. 481–486). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz Chaimowicz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by CAPES, CNPq, and Fapemig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, V.G., Pires, A.G., Alitappeh, R.J. et al. Spatial segregative behaviors in robotic swarms using differential potentials. Swarm Intell 14, 259–284 (2020). https://doi.org/10.1007/s11721-020-00184-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11721-020-00184-0

Keywords

Navigation