Skip to main content
Log in

Theoretical study on carbonaceous materials as high efficient carriers for crizotinib drug in liquid water by density functional theory approach

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In order to get a precise insight into the nature of the intermolecular interaction of crizotinib drug with carbon nanomaterials, i.e., fullerene C70 and graphene nanosheet as high efficient carriers, the density functional theory calculations are applied on the binding strength, the molecular structures, electronic properties, and charge transfer in the water phase. Based on the calculated adsorption energy values, the physical nature for the interaction of the adsorbed drug with carbon nanostructures is approved. The obtained results suggest that crizotinib drug exhibits the strongest affinity for the adsorption on graphene nanosheet in comparison to fullerene C70. By considering the optimized geometries of the considered complexes, the π–π stacking interactions between π orbitals of the carbon nanostructures and the six-membered aromatic ring of the adsorbed molecule are observed. As a result of the physisorption process, no structural or electronic change of the adsorbed drug is found. Analysis of the energetic parameter of atoms-in-molecule method suggests medium strength intermolecular interaction of crizotinib drug with carbon nanostructures with partially covalent nature. The interactions of crizotinib drug and carbon nanostructures on the basis of two reactivity descriptors such as the overall stabilization energy and the fractional number of electrons transferred have been explained. The theoretical results show that the interaction of graphene nanosheet with crizotinib agent is more favorable than fullerene C70. The analysis of the natural bond orbital shows the capability of the carbon nanostructures to accept precisely the electron from crizotinib drug molecule during the adsorption process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

C60:

Fullerene

DFT:

Density functional theory

GNS:

Graphene nanosheet

MD:

Molecular dynamics

DOX:

Doxorubicin

CPT:

Camptothecin

AIM:

Atoms-in-molecule

CTZ:

Crizotinib

SCRF:

Self-consistent reaction field

PCM:

Polarized continuum model

BSSE:

Basis set superposition error

Eads:

Adsorption energy

NBO:

Natural bond orbital analysis

HOMO:

Highest occupied molecular orbital

LUMO:

Lowest unoccupied molecular orbital

MEP:

Molecular electrostatic potential

HOMA:

Harmonic oscillator model of aromaticity

BCP:

Bond critical point

NCI:

Non-covalent interaction

RDG:

Reduced density gradient

TDOS:

Total density of states

PDOS:

Projected density of state

References

  1. Krätschmer W, Lamb LD, Fostiropoulos K, Huffman DR (1990) Solid C60: a new form of carbon. Nature 347:354

    Article  Google Scholar 

  2. Chong Y, Ge C, Yang Z, Garate J, Gu Z, Weber JK, Liu J, Zhou R (2015) Reduced cytotoxicity of graphene nanosheets mediated by blood-protein coating. ACS Nano 9:5713–5724

    Article  CAS  Google Scholar 

  3. Da Ros T, Spalluto G, Prato M (2001) Biological applications of fullerene derivatives: a brief overview. Croat Chem Acta 74:743–755

    Google Scholar 

  4. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205–212

    Article  Google Scholar 

  5. Feng L, Wu L, Qu X (2013) New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv Mater 25:168–186

    Article  CAS  Google Scholar 

  6. Gonçalves G, Vila M, Portolés MT, Vallet-Regi M, Gracio J, Marques PAA (2013) Nano-graphene oxide: a potential multifunctional platform for cancer therapy. Adv Healthcare Mater 2:1072–1090

    Article  Google Scholar 

  7. Yang K, Feng L, Shi X, Liu Z (2013) Nano-graphene in biomedicine: theranostic applications. Chem Soc Rev 42:530–547

    Article  CAS  Google Scholar 

  8. Shen H, Zhang L, Liu M, Zhang Z (2012) Biomedical applications of graphene. Theranostics. 2:283–294

    Article  CAS  Google Scholar 

  9. Feng LZ, Liu ZA (2011) Graphene in biomedicine: opportunities and challenges. Nanomedicine. 6:317–324

    Article  CAS  Google Scholar 

  10. Sanchez CV, Jachak A, Hurt RH, Kane BA (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34

    Article  CAS  Google Scholar 

  11. Ghasemi AS, Ashrafi F, Babanejad SA, Elyasi A (2019) Study of the physicochemical properties of anti-cancer drug gemcitabine on the surface of Al doped C60 and C70 fullerenes: a DFT computation. J Struct Chem 60:13–19

    Article  CAS  Google Scholar 

  12. Farhang Rik B, Ahmadi R, Karegar Razi M (2019) Evaluation of C60 nano-structure performance as nano-carriers of procarbazine anti-cancer drug using density functional theory methods. Iran Chem Commun 7:405–414

    Google Scholar 

  13. Parlak C, Alver Ö (2019) Adsorption of ibuprofen on silicon decorated fullerenes and single walled carbon nanotubes: a comparative DFT study. J Mol Struct 1184:110–113

    Article  CAS  Google Scholar 

  14. Alver Ö, Parlak C, Ramasami P, Şenyel M (2018) Interaction between doped C60 fullerenes and piperazine-2, 3, 5, 6-tetraone: DFT simulation. Main Group Metal Chem 41(3–4):63–66

    Article  CAS  Google Scholar 

  15. Hasanzade Z, Raissi H (2017) Investigation of graphene-based nanomaterial as nanocarrier for adsorption of paclitaxel anticancer drug: a molecular dynamics simulation study. J Mol Model 23(2):36

    Article  Google Scholar 

  16. Shahabi M, Raissi H (2018) Screening of the structural, topological, and electronic properties of the functionalized graphene nanosheets as potential tegafur anticancer drug carriers using DFT method. J Biomol Struct Dyn 36(10):2517–2529

    Article  CAS  Google Scholar 

  17. Chehel Amirani M, Tang T (2015) Binding of nucleobases with graphene and carbon nanotube: a review of computational studies. J Biomol Struct Dyn 33(7):1567–1597

    Article  CAS  Google Scholar 

  18. Mirkamali ES, Ahmadi R, Kalateh K, Zarei G (2019) Adsorption of melphalan anticancer drug on the surface of fullerene (C24): a comprehensive DFT study. Nanomed J 6(2):112–119

    CAS  Google Scholar 

  19. Ahmadi R, Sarvestani MRJ, Sadeghi B (2018) Computational study of the fullerene effects on the properties of 16 different drugs: a review. Int J Nano Dimens 9(4):325–335

    CAS  Google Scholar 

  20. Hazrati MK, Hadipour NL (2016) Adsorption behavior of 5-fluorouracil on pristine, B-, Si-, and Al-doped C60 fullerenes: a first-principles study. Phys Lett A 380(7–8):937–941

    Article  CAS  Google Scholar 

  21. Shahabi M, Raissi H (2017) Investigation of the solvent effect, molecular structure, electronic properties and adsorption mechanism of tegafur anticancer drug on graphene nanosheet surface as drug delivery system by molecular dynamics simulation and density functional approach. J Incl Phenom Macrocycl Chem 88(3–4):159–169

    Article  CAS  Google Scholar 

  22. Dastani N, Arab A, Raissi H (2019) Adsorption of Ampyra anticancer drug on the graphene and functionalized graphene as template materials with high efficient carrier. Adsorption:1–15

  23. Alinejad A, Raissi H, Hashemzadeh H (2019) Understanding co-loading of doxorubicin and camptothecin on graphene and folic acidconjugated graphene for targeting drug delivery: classical MD simulation and DFT calculation. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2019.1645044

  24. Refson K, Parker SF (2015) Assignment of the internal vibrational modes of C70 by inelastic neutron scattering spectroscopy and periodic-DFT. ChemistryOpen 4:620–625

    Article  CAS  Google Scholar 

  25. Kris MG, HemOncToday (2010) <http://www.healio.com/hematologyoncology/lung-cancer/news/online/%7B7F093ECD-D7CD-420A-86E2-F47AC2497224%7D/ALK-inhibitor-crizotinib-has-high-response-rate-in-patients-withALK-positive-NSCLC> (retrieved 01.11.14)

  26. Mennucci B (2012) Polarizable continuum model. Wiley Interdiscip Rev Comput Mol Sci 2:386–404. https://doi.org/10.1002/wcms.1086

    Article  CAS  Google Scholar 

  27. Miertus S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129. https://doi.org/10.1016/0301-0104(81)85090-2

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Millam JM (2003) Gaussian 03, revision C.02 (or D.01). Gaussian Inc., Pittsburgh

    Google Scholar 

  29. Boys SF, Bernardi FD (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  30. Glendening, E.D., Reed, A.E., Carpenter, J.E., Weinhold, F.: NBO, version 3.1. Gaussian Inc., Pittsburgh (1992)

  31. Wendt M, Weinhold F (2001) NBOView 1.0. Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  32. Biegler-König F, Schönbohm J, Bayles D (2001) AIM2000—a program to analyze and visualize atoms in molecules. J Comput Chem 22:545–559

    Article  Google Scholar 

  33. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105(26):7512–7516. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  34. Fukui K (1982) Role of frontier orbitals in chemical reactions. Science 218:747–754. https://doi.org/10.1126/science.218.4574.747

  35. Koopmans TA (1934) Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms [On the assignment of wave functions and eigenvalues to the individual electrons of an atom]. Physica 1:104–113. https://doi.org/10.1016/S00318914(34)90011-2

    Article  Google Scholar 

  36. Murray, J.S. & Sen, K. eds.(1996). Molecular electrostatic potentials: concepts and applications, Elsevier

  37. Krygowski TM, Cyranski MK (1996) Separation of the energetic and geometric contributions to the aromaticity of p-electron carbocyclics. Tetrahedron 52:1713–1722

    Article  CAS  Google Scholar 

  38. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  Google Scholar 

  39. Johnson E, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A, Yang W (2010) Revealing non-covalent interactions. J Am Chem Soc 132:6498–6506

    Article  CAS  Google Scholar 

  40. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–740. https://doi.org/10.1021/ic00277a030

    Article  CAS  Google Scholar 

  41. Khorram R, Raissi H, Morsali A, Shahabi M (2018) The computational study of the ©-Fe2O3 nanoparticle as Carmustine drug delivery system: DFT approach. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2018.1429312

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kia Kiani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiani, M.K., Ghasemi, A.S. & Ravari, F. Theoretical study on carbonaceous materials as high efficient carriers for crizotinib drug in liquid water by density functional theory approach. Struct Chem 31, 1553–1561 (2020). https://doi.org/10.1007/s11224-020-01522-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01522-y

Keywords

Navigation