Skip to main content
Log in

Harnessing aromaticity and intramolecular hydrogen bonding to tailor organosuperbases by using 2,4,6-cycloheptatriene-1-imine scaffold

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The density functional theory (DFT) calculations at B3LYP/6-31 + G(d,p) level were performed for a series of new 2,4,6-cycloheptatriene-1-imine scaffolds which have potential to introduce as organosuperbases. In the present study, we have exploited the 2,4,6-cycloheptatriene-1-imines which strategically substituted at 2 and 7 positions by two potential anchoring arms having lone pair possessing atoms. The designed organic superbases were found to have the higher basicity than the benchmarked molecule, 1,8-bis(dimethylamino)-naphthalene. The proposed superbase B14 bearing guanidine and aniline groups possesses the highest proton affinity value as 1143.8 kJ mol−1. The protonation enthalpy, Gibbs free energy, harmonic oscillator model of aromaticity (HOMA), and nucleus-independent chemical shift (NICS) were used for the basicity comparison. After the protonation of the designed molecules, the positive charge on the conjugate acid is expected to be delocalized in the cycloheptatriene ring and led to its aromatization. The results indicate that the HOMA and NICS values of the ring in the conjugate acid are strongly elevated. On the other hand, very strong intramolecular hydrogen bonding is formed after protonation. These two factors enhance the stability of the conjugate acids and thereby increase the basicity of the designed molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alder RW, Bowman PS, Steele WRS, Winterman DP (1968). Chem Commun 1968:723–724

    Google Scholar 

  2. Bell RP (1973) The proton in chemistry. Cornell University Press, Ithaca

    Book  Google Scholar 

  3. Warren JJ, Mayer JM (2015). Biochemistry 54:1863–1878

    Article  CAS  Google Scholar 

  4. Jessop PG, Heldebrant DJ, Li XW, Eckert CA, Liott CL (2005). Nature 436:102–1102

    Article  Google Scholar 

  5. Biswas AK, Lo R, Si MK, Ganguly B (2014). Phys Chem Chem Phys 16:12567–12575

    Article  CAS  Google Scholar 

  6. Yang Z, He L, Zhao Y, Li B, Yu B (2011). Energy Environ Sci 4:3971–3975

    Article  CAS  Google Scholar 

  7. Lo R, Singh A, Kesharwani MK, Ganguly B (2012). Chem Commun 48:5865–5867

    Article  CAS  Google Scholar 

  8. Glasovac Z, Trukil VŠ, Eckert-Maksić M, Schröder D, Kaczorowska M, Schwarz H (2008). Int J Mass Spectrom 270:39–46

    Article  CAS  Google Scholar 

  9. Biswas AK, Ganguly B (2017). Chem Eur J 21:2700–2705

    Article  Google Scholar 

  10. Maksić ZB, Kovaćević B, Vianello R (2012). Chem Rev 112:5240–5270

    Article  Google Scholar 

  11. Raczyńska ED, Gal J, Maria P (2016). Chem Rev 116:13454–13511

    Article  Google Scholar 

  12. Margetić D (2009) In: Ishikawa T (ed) Superbases for organic synthesis: guanidines, amidines, phosphazenes and related organocatalysts. Wiley, Chichester

    Google Scholar 

  13. Saadat K, Shiri A, Kovačević B (2018). New J Chem 42:14568–14575

    Article  CAS  Google Scholar 

  14. Despotovic I, Vianello R (2014). Chem Commun 50:10941–10944

    Article  CAS  Google Scholar 

  15. Kovacevic B, Despotovic I, Maksic ZB (2007). Tetrahedron Lett 48:261–264

    Article  CAS  Google Scholar 

  16. Raab V, Gauchenova E, Merkoulov A, Harms K, Sundermeyer J, Kovačević B, Maksić ZB (2005). J Am Chem Soc 127:15738–15743

    Article  CAS  Google Scholar 

  17. Alder RW (1989). Chem Rev 89:1215–1223

    Article  CAS  Google Scholar 

  18. Bachrach SM (2013). J Organomet Chem 78:10909–10916

    Article  CAS  Google Scholar 

  19. Tian Z, Fattahi A, Lis L, Kass SR (2009). Croat Chem Acta 82:41–45

    CAS  Google Scholar 

  20. Bachrach SM, Wilbanks CC (2010). J Organomet Chem 75:2651–2660

    Article  CAS  Google Scholar 

  21. Bachrach SM (2019). J Organomet Chem 84:3467–3476

    Article  CAS  Google Scholar 

  22. Barić D, Dragičević I, Kovačević B (2013). J Organomet Chem 78:4075–4082

    Article  Google Scholar 

  23. Saeidian H, Barfinejad E (2019). ChemistrySelect 4:3088–3095

    Article  CAS  Google Scholar 

  24. Valadbeigi Y (2017). Chem Phys Lett 689:1–7

    Article  CAS  Google Scholar 

  25. Bandar JS, Lambert TH (2012). J Am Chem Soc 134:5552–5555

    Article  CAS  Google Scholar 

  26. Despotović I, Maksić ZB, Vianello R (2007). New J Chem 31:52–62

    Article  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Jr Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Salvador P, Dannenberg JJ, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RI, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2013) Gaussian 09. Gaussian, Inc, Wallingford

    Google Scholar 

  28. Porannea RG, Stanger A (2015). Chem Soc Rev 44:6597–6615

    Article  Google Scholar 

  29. Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M (2014). Chem Rev 114:6383–6422

    Article  CAS  Google Scholar 

  30. Raczynska ED, Hallman M, Kolczynska K, Stepniewski TM (2010). Symmetry 2:1485–1509

    Article  CAS  Google Scholar 

  31. Linstrom PJ, Mallard WG (2009) NIST Chemistry Webbook. NIST, Gaithersburg http://webbook.nist.gov

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zohreh Mirjafary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 2.38 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilani, M., Saeidian, H. & Mirjafary, Z. Harnessing aromaticity and intramolecular hydrogen bonding to tailor organosuperbases by using 2,4,6-cycloheptatriene-1-imine scaffold. Struct Chem 31, 1545–1551 (2020). https://doi.org/10.1007/s11224-020-01520-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01520-0

Keywords

Navigation