Skip to main content
Log in

On the structure theory of partial automaton semigroups

  • Research Article
  • Published:
Semigroup Forum Aims and scope Submit manuscript

Abstract

We study automaton structures, i.e., groups, monoids and semigroups generated by an automaton, which, in this context, means a deterministic finite-state letter-to-letter transducer. Instead of considering only complete automata, we specifically investigate semigroups generated by partial automata. First, we show that the class of semigroups generated by partial automata coincides with the class of semigroups generated by complete automata if and only if the latter class is closed under removing a previously adjoined zero, which is an open problem in (complete) automaton semigroup theory stated by Cain. Then, we show that no semidirect product (and, thus, also no direct product) of an arbitrary semigroup with a (non-trivial) subsemigroup of the free monogenic semigroup is an automaton semigroup. Finally, we concentrate on inverse semigroups generated by invertible but partial automata, which we call automaton-inverse semigroups, and show that any inverse automaton semigroup can be generated by such an automaton (showing that automaton-inverse semigroups and inverse automaton semigroups coincide).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note, however, that their paper considers slightly different inverse semigroups: they are generated by arbitrary subsets of states of an automaton, while, in this paper, the inverse semigroups are always generated by all states.

  2. For readers familiar with syntactic semigroups: \(B_2\) is the syntactic semigroup of \((qp)^+\).

  3. In fact, this is what was stated in [9, Proposition 1].

  4. A word x is a prefix of another word y if there is some word z such that \(y = xz\).

  5. Cross diagrams seem to increase in usage lately. They seem to have been introduced in [1] where the authors connect them to the square diagrams of [12].

  6. Recall that an element s of a semigroup has torsion if there are \(i, j > 0\) with \(i \ne j\) such that \(s^i = s^j\).

  7. In fact, we can find a suitable \(r_j\) for every \(r_i \in Y_i\).

  8. For example, we can choose \(i = 2 \omega \) where \(\omega \) is the smallest exponent such that \(s^\omega \) is idempotent. Then i satisfies the condition because of \(s^{2 \omega - 1} s^\omega = s^{2 \omega - 1}\).

  9. We reserve the term injective for total functions.

  10. The modification is inspired by [16, Fig. 8]; see also [7, Example 2].

  11. In fact, it is an anti-isomorphism.

  12. See, e.g., [14, Theorem 5.1.1, p. 145].

References

  1. Akhavi, A., Klimann, I., Lombardy, S., Mairesse, J., Picantin, M.: On the finiteness problem for automaton (semi)groups. Int. J. Algebra Comput. 22(06), 1–26 (2012). https://doi.org/10.1142/S021819671250052X

    Article  MathSciNet  MATH  Google Scholar 

  2. Brough, T., Cain, A.J.: Automaton semigroup constructions. Semigroup Forum 90(3), 763–774 (2015). https://doi.org/10.1007/s00233-014-9632-x

    Article  MathSciNet  MATH  Google Scholar 

  3. Brough, T., Cain, A.J.: Automaton semigroups: new constructions results and examples of non-automaton semigroups. Theoret. Comput. Sci. 674, 1–15 (2017). https://doi.org/10.1016/j.tcs.2017.02.003

    Article  MathSciNet  MATH  Google Scholar 

  4. Cain, A.J.: Automaton semigroups. Theoret. Comput. Sci. 410(47), 5022–5038 (2009). https://doi.org/10.1016/j.tcs.2009.07.054

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlitz, L., Wilansky, A., Milnor, J., Struble, R.A., Felsinger, N., Simoes, J.M.S., Power, E.A., Shafer, R.E., Maas, R.E.: Advanced problems: 5600–5609. Am. Math. Mon. 75(6), 685–687 (1968). https://doi.org/10.2307/2313822

    Article  MathSciNet  Google Scholar 

  6. D’Angeli, D., Francoeur, D., Rodaro, E., Wächter, J.P.: Infinite automaton semigroups and groups have infinite orbits. J. Algebra 553, 119–137 (2020). https://doi.org/10.1016/j.jalgebra.2020.02.014

    Article  MathSciNet  MATH  Google Scholar 

  7. D’Angeli, D., Rodaro, E., Wächter, J.P.: Automaton semigroups and groups: On the undecidability of problems related to freeness and finiteness. Isr. J. Math. (2020). https://doi.org/10.1007/s11856-020-1972-5

  8. D’Angeli, D., Rodaro, E., Wächter, J.P.: Orbit expandability of automaton semigroups and groups. Theoret. Comput. Sci. 809, 418–429 (2020). https://doi.org/10.1016/j.tcs.2019.12.037

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Angeli, D., Rodaro, E., Wächter, J.P.: On the complexity of the word problem for automaton semigroups and automaton groups. Adv. Appl. Math. 90, 160–187 (2017). https://doi.org/10.1016/j.aam.2017.05.008

    Article  MathSciNet  MATH  Google Scholar 

  10. Gillibert, P.: The finiteness problem for automaton semigroups is undecidable. Int. J. Algebra Comput. 24(01), 1–9 (2014). https://doi.org/10.1142/S0218196714500015

    Article  MathSciNet  MATH  Google Scholar 

  11. Gillibert, P.: An automaton group with undecidable order and Engel problems. J. Algebra 497, 363–392 (2018). https://doi.org/10.1016/j.jalgebra.2017.11.049

    Article  MathSciNet  MATH  Google Scholar 

  12. Glasner, Y., Mozes, S.: Automata and square complexes. Geom. Dedicata. 111(1), 43–64 (2005). https://doi.org/10.1007/s10711-004-1815-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Grigorchuk, R., Pak, I.: Groups of intermediate growth: an introduction. L’Enseignement Mathématique 54, 251–272 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Howie, J.M.: Fundamentals of Semigroup Theory. London Mathematical Society Monographs. Clarendon Press, Oxford (1996)

    Google Scholar 

  15. Nekrashevych, V.V.: Self-similar inverse semigroups and Smale spaces. Int. J. Algebra Comput. 16(5), 849–874 (2006). https://doi.org/10.1142/S0218196706003153

    Article  MathSciNet  MATH  Google Scholar 

  16. Olijnyk, A.S., Sushchansky, V.I., Słupik, J.K.: Inverse semigroups of partial automaton permutations. Int. J. Algebra Comput. 20(07), 923–952 (2010). https://doi.org/10.1142/S0218196710005960

    Article  MathSciNet  MATH  Google Scholar 

  17. Petrich, M.: Inverse Semigroups. Pure & Applied Mathematics. Wiley, Hoboken (1984)

    Google Scholar 

  18. Steinberg, B.: On Some Algorithmic Properties of Finite State Automorphisms of Rooted Trees, Contemporary Mathematics, vol. 633, pp. 115–123. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  19. Šunić, Z., Ventura, E.: The conjugacy problem in automaton groups is not solvable. J. Algebra 364, 148–154 (2012). https://doi.org/10.1016/j.jalgebra.2012.04.014

    Article  MathSciNet  MATH  Google Scholar 

  20. Wächter, J.P., Weiß, A.: An automaton group with PSPACE-complete word problem. In: C. Paul, M. Bläser (eds.) 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March 10–13, 2020, Montpellier, France, LIPIcs, vol. 154, pp. 6:1–6:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/LIPIcs.STACS.2020.6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Rodaro.

Additional information

Communicated by Mikhail Volkov.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Daniele D’Angeli was supported by the Austrian Science Fund Project FWF P24028-N18 and FWF P29355-N35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Angeli, D., Rodaro, E. & Wächter, J.P. On the structure theory of partial automaton semigroups. Semigroup Forum 101, 51–76 (2020). https://doi.org/10.1007/s00233-020-10114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00233-020-10114-5

Keywords

Navigation