Skip to main content
Log in

Kerr frequency comb with varying FSR spacing based on Si3N4 micro-resonator

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, we experimentally investigate a novel feedback loop scheme to generate optical frequency comb with varying free spectral range (FSR) spacing in a high-Q silicon nitride (Si3N4) micro-ring resonator. By selecting and amplifying different feedback sidebands, comb line spacing varying from 1-fold to 6-fold FSRs is successfully achieved. This approach could be beneficial to tune the comb repetition rate which is an important parameter for many applications, such as optical coherent communications, optical metrology and arbitrary waveform generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pasquazi A, Peccianti M, Razzari L, et al. Micro-combs: a novel generation of optical sources. Phys Rep, 2018, 729: 3–81

    Article  MathSciNet  Google Scholar 

  2. Kippenberg T J, Holzwarth R, Diddams S A. Microresonator-based optical frequency combs. Science, 2011, 332: 3–559

    Article  Google Scholar 

  3. Pfeifle J, Brasch V, Lauermann M, et al. Coherent terabit communications with microresonator Kerr frequency combs. Nat Photon, 2014, 8: 3–380

    Article  Google Scholar 

  4. Marin-Palomo P, Kemal J N, Karpov M, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 2017, 546: 3–279

    Article  Google Scholar 

  5. Suh M G, Yang Q F, Yang K Y, et al. Microresonator soliton dual-comb spectroscopy. Science, 2016, 354: 3–603

    Article  Google Scholar 

  6. Papp S B, Beha K, Del’Haye P, et al. Microresonator frequency comb optical clock. Optica, 2014, 1: 3–14

    Article  Google Scholar 

  7. Ferdous F, Miao H, Leaird D E, et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nat Photon, 2011, 5: 3–776

    Article  Google Scholar 

  8. Obrzud E, Rainer M, Harutyunyan A, et al. A microphotonic astrocomb. Nat Photon, 2019, 13: 3–35

    Article  Google Scholar 

  9. Kues M, Reimer C, Roztocki P, et al. On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature, 2017, 546: 3–626

    Article  Google Scholar 

  10. Gohle C, Udem T, Herrmann M, et al. A frequency comb in the extreme ultraviolet. Nature, 2005, 436: 3–237

    Article  Google Scholar 

  11. Gambetta A, Ramponi R, Marangoni M. Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. Opt Lett, 2008, 33: 3–2673

    Article  Google Scholar 

  12. Ozharar S, Quinlan F, Ozdur I, et al. Ultraflat optical comb generation by phase-only modulation of continuous-wave light. IEEE Photon Technol Lett, 2008, 20: 3–38

    Article  Google Scholar 

  13. Zhou X, Zheng X P, Wen H, et al. All optical arbitrary waveform generation by optical frequency comb based on cascading intensity modulation. Opt Commun, 2011, 284: 3–3710

    Google Scholar 

  14. Savchenkov A A, Matsko A B, Ilchenko V S, et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys Rev Lett, 2008, 101: 093902

    Article  Google Scholar 

  15. Pasquazi A, Caspani L, Peccianti M, et al. Self-locked optical parametric oscillation in a CMOS compatible microring resonator: a route to robust optical frequency comb generation on a chip. Opt Express, 2013, 21: 3–13341

    Google Scholar 

  16. Hausmann B J M, Bulu I, Venkataraman V, et al. Diamond nonlinear photonics. Nat Photon, 2014, 8: 3–374

    Article  Google Scholar 

  17. Wang C, Zhu R R, Hu H, et al. Monolithic photonic circuits for Kerr frequency comb generation, filtering and modulation. 2018. ArXiv: 1809.08637v1

  18. Wilson D J, Schneider K, Hoenl S, et al. Gallium phosphide nonlinear photonics. 2018. ArXiv: 1808.03554

  19. Song Q H. Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci China-Phys Mech Astron, 2019, 62: 074231

    Article  Google Scholar 

  20. Hao Z Z, Zhang L, Gao A, et al. Periodically poled lithium niobate whispering gallery mode microcavities on a chip. Sci China-Phys Mech Astron, 2018, 61: 114211

    Article  Google Scholar 

  21. Ikeda K, Saperstein R E, Alic N, et al. Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/silicon dioxide waveguides. Opt Express, 2008, 16: 3–12994

    Article  Google Scholar 

  22. Xue X X, Xuan Y, Liu Y, et al. Mode-locked dark pulse Kerr combs in normal-dispersion microresonators. Nat Photon, 2015, 9: 3–600

    Article  Google Scholar 

  23. Miller S A, Okawachi Y, Ramelow S, et al. Tunable frequency combs based on dual microring resonators. Opt Express, 2015, 23: 3–21540

    Article  Google Scholar 

  24. Jung H, Xiong C, Fong K Y, et al. Optical frequency comb generation from aluminum nitride microring resonator. Opt Lett, 2013, 38: 3–2813

    Google Scholar 

  25. Papp S B, Del’Haye P, Diddams S A. Parametric seeding of a microresonator optical frequency comb. Opt Express, 2013, 21: 17615

    Article  Google Scholar 

  26. Johnson A R, Okawachi Y, Lamont M R E, et al. Microresonator-based comb generation without an external laser source. Opt Express, 2014, 22: 1394

    Article  Google Scholar 

  27. Wang W Q, Chu S T, Little B E, et al. Dual-pump Kerr micro-cavity optical frequency comb with varying FSR spacing. Sci Rep, 2016, 6: 28501

    Article  Google Scholar 

  28. Wang W Q, Zhang W F, Chu S T, et al. Repetition rate multiplication pulsed laser source based on a microring resonator. ACS Photonic, 2017, 4: 3–1683

    Article  Google Scholar 

  29. Okawachi Y, Saha K, Levy J S, et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt Lett, 2011, 36: 3–3400

    Article  Google Scholar 

  30. Tan D T H, Ikeda K, Sun P C, et al. Group velocity dispersion and self phase modulation in silicon nitride waveguides. Appl Phys Lett, 2010, 96: 061101

    Article  Google Scholar 

  31. Okawachi Y, Lamont M R E, Luke K, et al. Bandwidth shaping of microresonator-based frequency combs via dispersion engineering. Opt Let, 2014, 39: 3–3538

    Article  Google Scholar 

  32. Ferdous F, Miao H X, Wang P H, et al. Probing coherence in microcavity frequency combs via optical pulse shaping. Opt Express, 2012, 20: 3–21043

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61335002, 11574102, 61675084, 61775094) and National High Technology Research and Development Program of China (Grant No. 2015AA016904).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Y., Gao, Y., Zeng, C. et al. Kerr frequency comb with varying FSR spacing based on Si3N4 micro-resonator. Sci. China Inf. Sci. 63, 212401 (2020). https://doi.org/10.1007/s11432-019-2662-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2662-x

Keywords

Navigation