Skip to main content
Log in

Gate-tunable linear magnetoresistance in molybdenum disulfide field-effect transistors with graphene insertion layer

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) holds great promise as atomically thin two-dimensional (2D) semiconductor for future electronics and opto-electronics. In this report, we study the magnetoresistance (MR) of MoS2 field-effect transistors (FETs) with graphene insertion layer at the contact interface. Owing to the unique device structure and high-quality contact interface, a gate-tunable linear MR up to 67% is observed at 2 K. By comparing with the MRs of graphene FETs and MoS2 FETs with conventional metal contact, it is found that this unusual MR is most likely to be originated from the contact interfaces between graphene and MoS2, and can be explained by the classical linear MR model caused by spatial fluctuation of carrier mobility. Our study demonstrates large MR responses in MoS2-based systems through heterojunction design, shedding lights for the future magneto-electronics and van der Waals heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Peierls, R. E. Quantum Theory of Solids; Clarendon Press, Oxford, 1955.

    Google Scholar 

  2. Parish, M. M.; Littlewood, P. B. Non-saturating magnetoresistance in heavily disordered semiconductors. Nature2003, 426, 162–165.

    CAS  Google Scholar 

  3. Xu, R.; Husmann, A.; Rosenbaum, T. F.; Saboungi, M. L.; Enderby, J. E.; Littlewood, P. B. Large magnetoresistance in non-magnetic silver chalcogenides. Nature1997, 390, 57–60.

    CAS  Google Scholar 

  4. Lee, M.; Rosenbaum, T. F.; Saboungi, M. L.; Schnyders, H. S. Band-gap tuning and linear magnetoresistance in the silver chalcogenides. Phys. Rev. Lett.2002, 88, 066602.

    CAS  Google Scholar 

  5. Wang, C. M.; Lei, X. L. Linear magnetoresistance on the topological surface. Phys. Rev. B2012, 86, 035442.

    Google Scholar 

  6. Assaf, B. A.; Cardinal, T.; Wei, P.; Katmis, F.; Moodera, J. S.; Heiman, D. Linear magnetoresistance in topological insulator thin films: Quantum phase coherence effects at high temperatures. Appl. Phys. Lett.2013, 102, 012102.

    Google Scholar 

  7. Gusev, G. M.; Olshanetsky, E. B.; Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A. Linear magnetoresistance in hgte quantum wells. Phys. Rev. B2013, 87, 081311.

    Google Scholar 

  8. Wang, W. J.; Gao, K. H.; Li, Z. Q.; Lin, T.; Li, J.; Yu, C.; Feng, Z. H. Classical linear magnetoresistance in epitaxial graphene on SiC. Appl. Phys. Lett.2014, 105, 182102.

    Google Scholar 

  9. Friedman, A. L.; Tedesco, J. L.; Campbell, P. M.; Culbertson, J. C.; Aifer, E.; Perkins, F. K.; Myers-Ward, R. L.; Hite, J. K.; Eddy, C. R. Jr.; Jernigan, G. G. et al. Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett.2010, 10, 3962–3965.

    CAS  Google Scholar 

  10. Narayanan, A.; Watson, M. D.; Blake, S. F.; Bruyant, N.; Drigo, L.; Chen, Y. L.; Prabhakaran, D.; Yan, B.; Felser, C.; Kong, T. et al. Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2. Phys. Rev. Lett.2015, 114, 117201.

    CAS  Google Scholar 

  11. Novak, M.; Sasaki, S.; Segawa, K.; Ando, Y. Large linear magnetoresistance in the dirac semimetal TlBiSSe. Phys. Rev. B2015, 91, 041203.

    Google Scholar 

  12. Ali, M. N.; Xiong, J.; Flynn, S.; Tao, J.; Gibson, Q. D.; Schoop, L. M.; Liang, T.; Haldolaarachchige, N.; Hirschberger, M.; Ong, N. P. et al. Large, non-saturating magnetoresistance in WTe2. Nature2014, 514, 205–208.

    CAS  Google Scholar 

  13. Abrikosov, A. A. Quantum magnetoresistance. Phys. Rev. B1998, 58, 2788–2794.

    CAS  Google Scholar 

  14. Abrikosov, A. A. Quantum linear magnetoresistance. EPL Eur. Lett.2000, 49, 789–793.

    CAS  Google Scholar 

  15. Abrikosov, A. A. Quantum magnetoresistance of layered semimetals. Phys. Rev. B1999, 60, 4231–4234.

    CAS  Google Scholar 

  16. Parish, M. M.; Littlewood, P. B. Classical magnetotransport of inhomogeneous conductors. Phys. Rev. B2005, 72, 094417.

    Google Scholar 

  17. von Kreutzbruck, M.; Lembke, G.; Mogwitz, B.; Korte, C.; Janek, J. Linear magnetoresistance in Ag2+δSe thin films. Phys. Rev. B2009, 79, 035204.

    Google Scholar 

  18. Kozlova, N. V.; Mori, N.; Makarovsky, O.; Eaves, L.; Zhuang, Q. D.; Krier, A.; Patanè, A. Linear magnetoresistance due to multiple-electron scattering by low-mobility islands in an inhomogeneous conductor. Nat. Commun.2012, 3, 1097.

    CAS  Google Scholar 

  19. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol.2011, 6, 147–150.

    CAS  Google Scholar 

  20. Duan, X. D.; Wang, C.; Pan, A. L.; Yu, R. Q.; Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges. Chem. Soc. Rev.2015, 44, 8859–8876.

    CAS  Google Scholar 

  21. Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science2015, 349, aab2750.

    Google Scholar 

  22. Ye, Y.; Xiao, J.; Wang, H. L.; Ye, Z. L.; Zhu, H. Y.; Zhao, M.; Wang, Y.; Zhao, J. H.; Yin, X. B.; Zhang, X. Electrical generation and control of the valley carriers in a monolayer transition metal dichalcogenide. Nat. Nanotechnol.2016, 11, 598–602.

    CAS  Google Scholar 

  23. Liang, S. H.; Yang, H. W.; Renucci, P.; Tao, B. S.; Laczkowski, P.; Mc-Murtry, S.; Wang, G.; Marie, X.; George, J. M.; Petit-Watelot, S. et al. Electrical spin injection and detection in molybdenum disulfide multilayer channel. Nat. Commun.2017, 8, 14947.

    CAS  Google Scholar 

  24. Mak, K. F.; McGill, K. L.; Park, J.; McEuen, P. L. The valley hall effect in MoS2 transistors. Science2014, 344, 1489–1492.

    CAS  Google Scholar 

  25. Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol.2012, 7, 494–498.

    CAS  Google Scholar 

  26. Xu, X. D.; Yao, W.; Xiao, D.; Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys.2014, 10, 343–350.

    CAS  Google Scholar 

  27. Guan, H. M.; Tang, N.; Huang, H.; Zhang, X. Y.; Su, M.; Liu, X. C.; Liao, L.; Ge, W. K.; Shen, B. Inversion symmetry breaking induced valley hall effect in multilayer WSe2. ACS Nano2019, 13, 9325–9331.

    CAS  Google Scholar 

  28. Zeng, H. L.; Dai, J. F.; Yao, W.; Xiao, D.; Cui, X. D. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol.2012, 7, 490–493.

    CAS  Google Scholar 

  29. Neal, A. T.; Liu, H.; Gu, J. J.; Ye, P. D. Magneto-transport in MoS2: Phase coherence, spin-orbit scattering, and the hall factor. ACS Nano2013, 7, 7077–7082.

    CAS  Google Scholar 

  30. Jie, W. J.; Yang, Z. B.; Zhang, F.; Bai, G. X.; Leung, C. W.; Hao, J. H. Observation of room-temperature magnetoresistance in monolayer MoS2 by ferromagnetic gating. ACS Nano2017, 11, 6950–6958.

    CAS  Google Scholar 

  31. Liu, Y.; Wu, H.; Cheng, H. C.; Yang, S.; Zhu, E. B.; He, Q. Y.; Ding, M. N.; Li, D. H.; Guo, J.; Weiss, N. O. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett.2015, 15, 3030–3034.

    CAS  Google Scholar 

  32. Cui, X.; Lee, G. H.; Kim, Y. D.; Arefe, G.; Huang, P. Y.; Lee, C. H.; Chenet, D. A.; Zhang, X.; Wang, L.; Ye, F. et al. Multi-terminal transport measurements of MoS2 using a van der waals hetero-structure device platform. Nat. Nanotechnol.2015, 10, 534–540.

    CAS  Google Scholar 

  33. Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature2018, 557, 696–700.

    CAS  Google Scholar 

  34. Huang, H.; Liu, X. Q.; Liu, F.; Liu, C. S.; Liang, X. L.; Zhang, Z. H.; Liu, K. H.; Zhao, X. Z.; Liao, L. Comprehensive insights into effect of van der Waals contact on carbon nanotube network field-effect transistors. Appl. Phys. Lett.2019, 115, 173503.

    Google Scholar 

  35. Chai, Y.; Hazeghi, A.; Takei, K.; Chen, H. Y.; Chan, P. C. H.; Javey, A.; Wong, H. S. P. Low-resistance electrical contact to carbon nanotubes with graphitic interfacial layer. IEEE Trans. Electron Dev.2012, 59, 12–19.

    CAS  Google Scholar 

  36. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett.2006, 97, 187401.

    CAS  Google Scholar 

  37. Liu, Y.; Guo, J.; Wu, Y. C.; Zhu, E. B.; Weiss, N. O.; He, Q. Y.; Wu, H.; Cheng, H. C.; Xu, Y.; Shakir, I. et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett.2016, 16, 6337–6342.

    CAS  Google Scholar 

  38. Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater.2013, 12, 815–820.

    CAS  Google Scholar 

  39. Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater.2016, 28, 8302–8308.

    CAS  Google Scholar 

  40. Liao, Z. M.; Wu, H. C.; Kumar, S.; Duesberg, G. S.; Zhou, Y. B.; Cross, G. L. W.; Shvets, I. V.; Yu, D. P. Large magnetoresistance in few layer graphene stacks with current perpendicular to plane geometry. Adv. Mater.2012, 24, 1862–1866.

    CAS  Google Scholar 

  41. Zhou, Y. B.; Han, B. H.; Liao, Z. M.; Wu, H. C.; Yu, D. P. From positive to negative magnetoresistance in graphene with increasing disorder. Appl. Phys. Lett.2011, 98, 222502.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2018YFB0406603), the National Natural Science Foundation of China (Nos. 61574006, 61522401, 61927806, 61521004, 11634002, and U1632156), as well as the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB30000000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Liao or Ning Tang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Guan, H., Su, M. et al. Gate-tunable linear magnetoresistance in molybdenum disulfide field-effect transistors with graphene insertion layer. Nano Res. 14, 1814–1818 (2021). https://doi.org/10.1007/s12274-020-2922-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2922-6

Keywords

Navigation