Skip to main content
Log in

Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Strain is a powerful tool to modify the optical properties of semiconducting transition metal dichalcogenides like MoS2, MoSe2, WS2 and WSe2. In this work we provide a thorough description of the technical details to perform uniaxial strain measurements on these two-dimensional semiconductors and we provide a straightforward calibration method to determine the amount of applied strain with high accuracy. We then employ reflectance spectroscopy to analyze the strain tunability of the electronic properties of single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2. Finally, we quantify the flake-to-flake variability by analyzing 15 different single-layer MoS2 flakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter2015, 27, 313201.

    Article  Google Scholar 

  2. Amorim, B.; Cortijo, A.; de Juan, F.; Grushin, A. G.; Guinea, F.; Gutiérrez-Rubio, A.; Ochoa, H.; Parente, V.; San-Jose, P.; Schiefele, J. et al. Novel effects of strains in graphene and other two dimensional materials. Phys. Rep.2016, 617, 1–54.

    Article  CAS  Google Scholar 

  3. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science2008, 32, 385–388.

    Article  CAS  Google Scholar 

  4. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano2011, 5, 9703–9709.

    Article  CAS  Google Scholar 

  5. Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S. J.; Agraït, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater.2012, 24, 772–775.

    Article  CAS  Google Scholar 

  6. Castellanos-Gomez, A.; Singh, V.; van der Zant, H. S. J.; Steele, G. A. Mechanics of freely-suspended ultrathin layered materials. Ann. Phys.2015, 527, 27–44.

    Article  CAS  Google Scholar 

  7. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett.2013, 13, 3626–3630.

    Article  CAS  Google Scholar 

  8. He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett.2013, 13, 2931–2936.

    Article  CAS  Google Scholar 

  9. Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett.2013, 13, 5361–5366.

    Article  CAS  Google Scholar 

  10. Hui, Y. Y.; Liu, X. F.; Jie, W. J.; Chan, N. Y.; Hao, J. H.; Hsu, Y. T.; Li, L. J.; Guo, W. L.; Lau, S. P. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano2013, 7, 7126–7131.

    Article  CAS  Google Scholar 

  11. Lloyd, D.; Liu, X. H.; Christopher, J. W.; Cantley, L.; Wadehra, A.; Kim, B. L.; Goldberg, B. B.; Swan, A. K.; Bunch, J. S. Band gap engineering with ultralarge biaxial strains in suspended monolayer MoS2. Nano Lett.2016, 16, 5836–5841.

    Article  CAS  Google Scholar 

  12. Zhu, C. R.; Wang, G.; Liu, B. L.; Marie, X.; Qiao, X. F.; Zhang, X.; Wu, X. X.; Fan, H.; Tan, P. H.; Amand, T. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B2013, 8, 121301.

    Article  Google Scholar 

  13. Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct-indirect band gap transition and phonon modulation in monolayer WS2. Nano Res.2015, 8, 2562–2572.

    Article  CAS  Google Scholar 

  14. Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun.2014, 5, 5246.

    Article  Google Scholar 

  15. Frisenda, R.; Drüppel, M.; Schmidt, R.; de Vasconcellos, S. M.; de Lara, D. P.; Bratschitsch, R.; Rohlfing, M.; Castellanos-Gomez, A. Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides. npj 2D Mater. Appl.2017, 1, 10.

    Article  Google Scholar 

  16. Zhao, Q. H.; Frisenda, R.; Wang, T.; Castellanos-Gomez, A. InSe: A two-dimensional semiconductor with superior flexibility. Nanoscale2019, 11, 9845–9850.

    Article  CAS  Google Scholar 

  17. Taghavi, N. S.; Gant, P.; Huang, P.; Niehues, I.; Schmidt, R.; de Vasconcellos, S. M.; Bratschitsch, R.; García-Hernández, M.; Frisenda, R.; Castellanos-Gomez, A. Thickness determination of MoS2, MoSe2, WS2 and WSe2 on transparent stamps used for deterministic transfer of 2D materials. Nano Res.2019, 12, 1691–1695.

    Article  CAS  Google Scholar 

  18. Backes, C.; Abdelkader, A. M.; Alonso, C.; Andrieux-Ledier, A.; Arenal, R.; Azpeitia, J.; Balakrishnan, N.; Banszerus, L.; Barjon, J.; Bartali, R. et al. Production and processing of graphene and related materials. 2D Mater.2020, 7, 022001.

    Article  CAS  Google Scholar 

  19. Niu, Y.; Gonzalez-Abad, S.; Frisenda, R.; Marauhn, P.; Drüppel, M.; Gant, P.; Schmidt, R.; Taghavi, N. S.; Barcons, D.; Molina-Mendoza, A. J. et al. Thickness-dependent differential reflectance spectra of monolayer and few-layer MoS2, MoSe2, WS2 and WSe2. Nanomaterials2018, 8, 725.

    Article  Google Scholar 

  20. Castellanos-Gomez, A.; Buscema, M.; Molenaar, R.; Singh, V.; Janssen, L.; van der Zant, H. S. J.; Steele, G. A. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater.2014, 1, 011002.

    Article  CAS  Google Scholar 

  21. Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; De Lara, D. P.; Jarillo-Herrero, P.; Gorbachev, R. V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals hetero-structures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68.

    Article  CAS  Google Scholar 

  22. Zhao, Q. H.; Wang, T.; Ryu, Y. K.; Frisenda, R. An inexpensive system for the deterministic transfer of 2D materials. J. Phys. Mater., in press, DOI: https://doi.org/10.1088/2515-7639/ab6a72.

  23. Frisenda, R.; Niu, Y.; Gant, P.; Molina-Mendoza, A. J.; Schmidt, R.; Bratschitsch, R.; Liu, J. X.; Fu, L.; Dumcenco, D.; Kis, A. et al. Micro-reflectance and transmittance spectroscopy: A versatile and powerful tool to characterize 2D materials. J. Phys. D Appl. Phys.2017, 5, 074002.

    Article  Google Scholar 

  24. Chernikov, A.; Berkelbach, T. C.; Hill, H. M.; Rigosi, A.; Li, Y. L.; Aslan, O. B.; Reichman, D. R.; Hybertsen, M. S.; Heinz, T. F. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett.2014, 113, 076802.

    Article  CAS  Google Scholar 

  25. Castellanos-Gomez, A.; Quereda, J.; van der Meulen, H. P.; Agraït, N.; Rubio-Bollinger, G. Spatially resolved optical absorption spectroscopy of single- and few-layer MoS2 by hyperspectral imaging. Nanotechnology2016, 27, 115705.

    Article  Google Scholar 

  26. Niehues, I.; Schmidt, R.; Drüppel, M.; Marauhn, P.; Christiansen, D.; Selig, M.; Berghäuser, G.; Wigger, D.; Schneider, R.; Braasch, L. et al. Strain control of exciton-phonon coupling in atomically thin semiconductors. Nano Lett.2018, 18, 1751–1757.

    Article  CAS  Google Scholar 

  27. Niehues, I.; Blob, A.; Stiehm, T.; Schmidt, R.; Jadriško, V.; Radatović, B.; Čapeta, D.; Kralj, M.; de Vasconcellos, S. M.; Bratschitsch, R. Strain transfer across grain boundaries in MoS2 monolayers grown by chemical vapor deposition. 2D Mater.2018, 5, 031003.

    Article  Google Scholar 

  28. Niehues, I.; Blob, A.; Stiehm, T.; de Vasconcellos, S. M.; Bratschitsch, R. Interlayer excitons in bilayer MoS2 under uniaxial tensile strain. Nanoscale2019, 11, 12788–12792.

    Article  CAS  Google Scholar 

  29. Christopher, J. W.; Vutukuru, M.; Lloyd, D.; Bunch, J. S.; Goldberg, B. B.; Bishop, D. J.; Swan, A. K. Monolayer MoS2 strained to 1.3% with a microelectromechanical system. J. Microelectromechan. Syst.2019, 28, 254–263.

    Article  CAS  Google Scholar 

  30. Li, Z. W.; Lv, Y. W.; Ren, L. W.; Li, J.; Kong, L. G.; Zeng, Y. J.; Tao, Q. Y.; Wu, R. X.; Ma, H. F.; Zhao, B. et al. Efficient strain modulation of 2D materials via polymer encapsulation. Nat. Commun.2020, 11, 11518.

    Google Scholar 

  31. He, X.; Li, H.; Zhu, Z. Y.; Dai, Z. Y.; Yang, Y.; Yang, P.; Zhang, Q.; Li, P.; Schwingenschlogl, U.; Zhang, X. X. Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure. Appl. Phys. Lett.2016, 10, 173105.

    Article  Google Scholar 

  32. Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun.2014, 5, 5246.

    Article  Google Scholar 

  33. John, A. P.; Thenapparambil, A.; Thalakulam, M. Strain-engineering the Schottky barrier and electrical transport on MoS2. Nanotechnology2020, 31, 275703.

    Article  CAS  Google Scholar 

  34. Island, J. O.; Kuc, A.; Diependaal, E. H.; Bratschitsch, R.; van der Zant, H. S. J.; Heine, T.; Castellanos-Gomez, A. Precise and reversible band gap tuning in single-layer MoSe2 by uniaxial strain. Nanoscale2016, 8, 2589–2593.

    Article  CAS  Google Scholar 

  35. Mennel, L.; Paur, M.; Mueller, T. Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2. APL Photonics2019, 4, 034404.

    Article  CAS  Google Scholar 

  36. Zhang, Q. H.; Chang, Z. Y.; Xu, G. Z.; Wang, Z. Y.; Zhang, Y. P.; Xu, Z. Q.; Chen, S. J.; Bao, Q. L.; Liu, J. Z.; Mai, Y. W. et al. Strain relaxation of monolayer WS2 on plastic substrate. Adv. Funct. Mater.2016, 26, 8707–8714.

    Article  CAS  Google Scholar 

  37. Schmidt, R.; Niehues, I.; Schneider, R.; Drüppel, M.; Deilmann, T.; Rohlfing, M.; Michaelis de Vasconcellos, S.; Castellanos-Gomez, A.; Bratschitsch, R. Reversible uniaxial strain tuning in atomically thin WSe2. 2D Mater.2016, 3, 021011.

    Article  Google Scholar 

  38. Desai, S. B.; Seol, G.; Kang, J. S.; Fang, H.; Battaglia, C.; Kapadia, R.; Ager, J. W.; Guo, J.; Javey, A. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett.2014, 14, 4592–4597.

    Article  CAS  Google Scholar 

  39. Aslan, O. B.; Deng, M. D.; Heinz, T. F. Strain tuning of excitons in monolayer WSe2. Phys. Rev. B2018, 9, 115308.

    Article  Google Scholar 

  40. Aslan, O. B.; Deng, M. D.; Brongersma, M. L.; Heinz, T. F. Strained bilayer WSe2 with reduced exciton-phonon coupling. Phys. Rev. B2020, 10, 115305.

    Article  Google Scholar 

  41. Tang, N. Y.; Du, C.; Wang, Q. Q.; Xu, H. R. Strain engineering in bilayer WSe2 over a large strain range. Microelectron. Eng.2020, 22, 111202.

    Article  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no 755655, ERC-StG 2017 project 2D-TOPSENSE). R. F. acknowledges the support from the Spanish Ministry of Economy, Industry and Competitiveness through a Juan de la Cierva-formación fellowship 2017 FJCI-2017-32919. H. L. acknowledges the grant from China Scholarship Council (CSC) under No. 201907040070.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Riccardo Frisenda or Andres Castellanos-Gomez.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrascoso, F., Li, H., Frisenda, R. et al. Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2 and WSe2. Nano Res. 14, 1698–1703 (2021). https://doi.org/10.1007/s12274-020-2918-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-2918-2

Keywords

Navigation