Skip to main content
Log in

Gibbs Variational Formula for Thermal Equilibrium States in Terms of Quantum Relative Entropy Density

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove the Gibbs variational formula in terms of quantum relative entropy density that characterizes translation invariant thermal equilibrium states in quantum lattice systems. It is a natural quantum extension of the similar statement established by Föllmer for classical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ruelle, D.: A variational formulation of equilibrium statistical mechanics and the Gibbs phase rule. Commun. Math. Phys. 5, 324–329 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  2. Robinson, D.W.: Statistical mechanics of lattice systems. Commun. Math. Phys. 5, 317–323 (1967)

    Article  MathSciNet  Google Scholar 

  3. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  4. Föllmer, H.: On entropy and information gain in random fields. Z. Wahrscheinlichkeitstheorie verw. Geb. 26, 207–217 (1973)

    Article  MathSciNet  Google Scholar 

  5. Hiai, F., Petz, D.: Entropy densities for Gibbs states of quantum spin systems. Rev. Math. Phys. 5, 693–712 (1994)

    Article  MathSciNet  Google Scholar 

  6. Ejima, S., Ogata, Y.: Perturbation theory of KMS states. Ann. Henri Poincaré 20, 2971–2986 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 1, 2nd edn. Springer-Verlag, Berlin (1987)

    Book  Google Scholar 

  8. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics 2, 2nd edn. Springer-Verlag, Berlin (1997)

    Book  Google Scholar 

  9. Umegaki, H.: Conditional expectation in an operator algebra IV, (entropy and information). Kodai. Math. Sem. Rep. 14, 59–85 (1962)

    Article  MathSciNet  Google Scholar 

  10. van Hove, L.: Quelques propriétés générales de L’intégrale de configuration d’un système de particules avec interaction. Physica 15, 951–961 (1949)

    Article  ADS  Google Scholar 

  11. Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  12. Martin, P.C., Schwinger, M.: Theory of many-particle systems. I. Phys. Rev. 115, 1342–1373 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  13. Haag, R., Hugenholz, N.M., Winnink, M.: On the equilibrium states in quantum statistical mechanics. Commun. Math. Phys. 5, 215–236 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  14. Araki, H., Ion, P.D.F.: On the equivalence of KMS and Gibbs conditions for states of quantum lattice systems. Commun. Math. Phys. 35, 1–12 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  15. Araki, H.: On the equivalence of the KMS condition and the variational principle for quantum lattice systems. Commun. Math. Phys. 38, 1–10 (1974)

    Article  ADS  Google Scholar 

  16. Dobrushin, R.L.: Description of a random field by means of conditional probabilities and the conditions governing its regularity. Theor. Prob. Appl. 13, 197–224 (1968)

    Article  Google Scholar 

  17. Lanford III, O.E., Ruelle, D.: Observable at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 194–215 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  18. Araki, H.: Relative hamiltonian for faithful normal states of a von Neumann algebra. Publ. RIMS, Kyoto Univ 9, 165–209 (1973)

    Article  MathSciNet  Google Scholar 

  19. Dyson, F.: The radiation theories of Tomonaga, Schwinger, and Feynman. Phys. Rev. 75, 486 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  20. Simon, B.: The Statistical Mechanics of Lattice Gases. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  21. Araki, H., Moriya, H.: Equilibrium statistical mechanics of fermion lattice systems. Rev. Math. Phys. 15, 93–198 (2003)

    Article  MathSciNet  Google Scholar 

  22. Hastings, M.B.: Quantum belief propagation. Phys. Rev. B 76, 201102 (2007). l

    Article  ADS  Google Scholar 

  23. Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938–1941 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  24. Lanford III, O.E., Robinson, D.W.: Mean entropy of states in quantum-statistical mechanics. J. Math. Phys. 9, 1120–1125 (1968)

    Article  ADS  Google Scholar 

  25. Georgii, H.-O.: Gibbs Measures and Phase Transitions. de Gruyter Studies in Mathematics. Springer, Berlin New York (1988)

    Book  Google Scholar 

  26. Nachtergaele, B., Ogata, Y., Sims, R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124, 1–13 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lanford III, O.E., Robinson, D.W.: Statistical mechanics of quantum spin systems. III. Commun. Math. Phys. 9, 327–338 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  28. Araki, H.: Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon–Nikodym theorem with a chain rule. Pac. J. Math. 50, 309–354 (1974)

    Article  MathSciNet  Google Scholar 

  29. Araki, H.: Golden–Thompson and Peierls–Bogolubov inequalities for a general von Neumann algebra. Commun. Math. Phys. 34, 167–178 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  30. Hiai, F., Petz, D.: Introduction to Matrix Analysis and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  31. Kotecký, R., Shlosman, S.B.: First-order phase transitions in large entropy lattice models. Commun. Math. Phys. 83, 493–515 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  32. Moriya, H.: Entropy density of one-dimensional quantum lattice systems. Rev. Math. Phys. 9, 361–369 (1997)

    Article  MathSciNet  Google Scholar 

  33. Lance, C.: Ergodic theorems for convex sets and operator algebras. Invent. Math. 37, 201–214 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  34. Hiai, F., Ohya, M., Petz, D.: McMillan type convergence for quantum Gibbs states. Arch. Math 64, 154–158 (1995)

    Article  MathSciNet  Google Scholar 

  35. Sagawa, T., et al.: Asymptotic reversibility of thermal operations for interacting quantum spin systems via generalized quantum Stein’s Lemma. arXiv:1907.05650

  36. Marco, L., Rey-Bellet, L.: Large deviations in quantum lattice systems: one phase region. J. Stat. Phys. 119, 715–746 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  37. Bouch, G.: Complex-time singularity and locality estimates for quantum lattice systems. J. Math. Phys. 56, 123303 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. Robinson, D.W.: The Thermodynamic Pressure in Quantum Statistical Mechanics. Lecture Notes in Physics, vol. 9. Springer, Berlin (1971)

    Book  Google Scholar 

  39. Sewell, G.L.: Quantum Mechanics and Its Emergent Macrophysics. Princeton University Press, Princeton (2002)

    MATH  Google Scholar 

  40. Narnhofer, H.: Thermodynamic phases and surface effects. Acta Phys. Aust. 54, 221–231 (1982)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Toshiyuki Toyoda for discussion on interplay between physics and information. Prof. Dénes Petz and Prof. Fumio Hiai told me their fundamental ideas of [5]. In particular, Prof. Hiai kindly sent me his private note explaining mathematical details.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajime Moriya.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriya, H. Gibbs Variational Formula for Thermal Equilibrium States in Terms of Quantum Relative Entropy Density. J Stat Phys 181, 761–771 (2020). https://doi.org/10.1007/s10955-020-02600-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02600-5

Keywords

Mathematics Subject Classification

Navigation