Skip to main content

Advertisement

Log in

Identification of resistance gene analogs involved in Phytophthora capsici recognition in black pepper (Piper nigrum L.)

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Black pepper (Piper nigrum L.) is an important spice crop with high economic value. However, its production is severely hampered by the oomycete pathogen, Phytophthora capsici. Integrative disease management strategies have been developed to control the pathogen, but the pathogen is in the phase of evolving its virulence. Absolute resistance against Phytophthora rot was not reported in black pepper germplasm. However, Piper colubrinum, a wild species is reported as resistant. Resistance proteins are involved in continuous surveillance of pathogen entry and activation of plant defense signalling pathways for an effective hypersensitive response to prevent pathogen invasion. In this study, a sequence-based homology approach using the conserved nucleotide-binding site (NBS) of known plant resistance genes was used to isolate Resistance Gene Analogs (RGA) and assess their transcript level during Phytophthora infection. The RGA transcript level was evaluated in resistant wild species (P. colubrinum), two moderately resistant black pepper genotypes (IISR Sakthi and 04-P24-1), and one susceptible genotype (Subhakara). The identified RGAs of black pepper were found to be of non-TIR R gene class with NBS motifs. The expressions of six PnRGAs were assessed employing qRT-PCR at different time points after challenging with highly aggressive Phytophthora isolate. The kinetics of differential expression post-infection with P. capsici indicates the differential timing and magnitude of pathogen recognition in resistant P. colubrinum and moderately resistant black pepper genotypes compared to susceptible genotype. In silico analysis revealed that differentially expressed P. nigrum RGAs function through ADP phosphorylation, which is a key process in pathogen recognition. The identification of P. nigrum RGAs induced by P. capsici should provide valuable information for cloning and characterization of resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ameline-Torregrosa C, Wang BB, O’Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB (2008) Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol 146:5–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anandaraj M (2000) Diseases of black pepper (Piper nigrum L.). In: Ravindran PN (ed) Black pepper- Piper nigrum L., medicinal and aromatic plants-industrial profiles. CRC Press Florida, Boca Raton, p 239

    Google Scholar 

  • Anandaraj M, Sarma YR (1995) Diseases of black pepper (Piper nigrum L.) and their management. J Spices Aromat Crops 4:17–23

    Google Scholar 

  • Bailey TL, Bodén M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS (2009) MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 37:W202–W208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakker EG, Toomajian C, Kreitman M, Bergelson J (2006) A genome-wide survey of R gene polymorphisms in Arabidopsis. Plant Cell 18:1803–1818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayer PE, Golicz AA, Tirnaz S, Chan CK, Edwards D, Batley J (2019) Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. Plant Biotechnol J 17:789–800

    CAS  PubMed  Google Scholar 

  • Bhai RS, Eapen SJ, Anandaraj M, Saji KV (2010) Identification of Phytophthora nematode resistant source-from opens pollinated progenies of black pepper (Piper nigrum) using a modified protocol. Indian J Agric Sci 80(10):893–897

    Google Scholar 

  • Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622

    CAS  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11–15

    Google Scholar 

  • Food and Agriculture Organization of the United Nations (2017) FAOSTAT Database. FAO, Rome Retrieved 1 Dec 2018 from http://faostat3.fao.org/home/E

    Google Scholar 

  • Gururani MA, Venkatesh J, Upadhyaya CP, Nookaraju A, Pandey SK, Park SW (2012) Plant disease resistance genes: current status and future directions. Physiol Mol Plant P 78:51–65

    CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hu L, Hao C, Fan R, Wu B, Tan L, Wu H (2015) De novo assembly and characterization of fruit transcriptome in black pepper (Piper nigrum). PLoS One 10(6):e0129822

    PubMed  PubMed Central  Google Scholar 

  • Jebakumar SR, Anandaraj M, Sarma YR (2001) Induction of PR proteins and defense related enzymes in black pepper due to inoculation with Phytophthora capsici. Indian Phytopathol 54:23e28

    Google Scholar 

  • Johnson KG, VijeshKumar IP, Anandaraj M, (2012) Transcriptomics approaches for gene discovery in plants - a case study in Piper. International Conference on Agricultural and Horticultural Sciences. Hyderabad International Convention Centre, India, Agrotechnology 1(2)

  • Joshi RK, Kar B, Mohanty S, Subudhi E, Nayak S (2012) Molecular cloning, characterisation and expression analysis of resistance gene candidates in Kampferia galanga L. Mol Biotechnol 50(3):200–210

  • Jupe J, Stam R, Howden AJM, Morris JA, Zhang R, Hedley PE, Huitema E (2013) Phytophthora capsici-tomato interaction features dramatic shifts in gene expression associated with a hemi-biotrophic lifestyle. Genome Biol 14:R63

    PubMed  PubMed Central  Google Scholar 

  • Kanazin V, Marek LF, Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Natl Acad Sci U S A 93:11746–11750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kar B, Nanda S, Kumar PN, Nayak S, Joshi RK (2013) Molecular characterization and functional analysis of CzR1, a coiled-coil-nucleotide-binding site-leucine–rich repeat R-gene from Curcuma Zedoaria Loeb. That confers resistance to Pythium aphanidermatum. Physiol Mol Plant P 83:59–68

    CAS  Google Scholar 

  • Leister D, Ballvora A, Salamini S, Gebhardt C (1996) A PCR based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nat Genet 14:421–429

    CAS  PubMed  Google Scholar 

  • Li P, Quan X, Jia G, Xiao J, Cloutier S, You FM (2016) RGAugury: a pipeline for genome-wide prediction of resistance gene analogs (RGAs) in plants. BMC Genomics 17:852

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2 (-deltadeltaC(t)) method. Methods 25(4):402–408

    CAS  PubMed  Google Scholar 

  • Maekawa T, Kufer TA, Schulze-Lefert P (2011) NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 12:817–826

    CAS  PubMed  Google Scholar 

  • Mahadevan C, Krishnan A, Saraswathy GG, Surendran A, Jaleel A, Sakuntala M (2016) Transcriptome- assisted label-free quantitative proteomics analysis reveals novel insights into Piper nigrumPhytophthora capsici Phytopathosystem. Front Plant Sci 7:785

    PubMed  PubMed Central  Google Scholar 

  • Malik N, George JK (2018) Resistance genes in Piper colubrinum: In silico survey from leaf transcriptome and expression studies upon challenge inoculation with Phytophthora capsici. Appl Biochem Biotechnol 184:987–1008

    CAS  PubMed  Google Scholar 

  • Marone D, Russo MA, Laido G, Leonardis AMD, Mastrangelo AM (2013) Plant nucleotide binding site- leucine rich repeat (NBS-LRR) genes: active guardians in host defense responses. Int J Mol Sci 14:7302–7326

    CAS  PubMed  PubMed Central  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212

    PubMed  PubMed Central  Google Scholar 

  • Metsalu T, Vilo J (2015) Clustvis: a web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res 43(W1):W566–W570

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding super family. Plant J 20:317–332

    CAS  PubMed  Google Scholar 

  • Nair RA, Thomas G (2007) Isolation, characterization and expression studies of resistance gene candidates (RGCs) from Zingiber spp. Theor Appl Genet 116:123–134

    CAS  Google Scholar 

  • Nambiar KKN, Sarma YR (1982) Some aspects of epidemiology of foot rot of black pepper. In: Nambiar KKN (ed) Phytophthora diseases of tropical cultivated plants. Central Plantation Crops Research Institute, Kasaragod, pp 225–232

    Google Scholar 

  • Ohmori T, Murata M, Motoyoshi F (1998) Characterization of disease resistance gene-like sequences in near-isogenic lines of tomato. Theor Appl Genet 96:331–338

    CAS  PubMed  Google Scholar 

  • Peraza-Echeverria S, Dale JL, Harding RM, Smith MK, Collet C (2008) Characterization of disease resistance gene candidates of the nucleotide binding site (NBS) type from banana and correlation of a transcriptional polymorphism with resistance to Fusarium oxysporum f.sp. cubense race 4. Mol Breed 22:565e79

    Google Scholar 

  • Purseglove JW, Brown EG, Green CL, Robbins SRJ (1981) Spices, vol I. Longman, London

    Google Scholar 

  • Ravindran PN, Babu KN, Sasikumar B, Krishnamurthy KS (2000) Botany and crop improvement of black pepper. In: Ravindran PN (ed) Black pepper- Piper nigrum L., medicinal and aromatic plants-industrial profiles. CRC Press, Boca Raton, p 23

    Google Scholar 

  • Ristaino JB, Gumpertz ML (2000) New frontiers in the study of dispersal and spatial analysis of epidemics caused by species in the genus Phytophthora. Annu Rev Phytopathol 38(1):541–576

    CAS  PubMed  Google Scholar 

  • Sarma YR, Anandaraj M, Venugopal, M (1994) Diseases of spice crops. In: Chadha KL, Rethinam P (eds.), Advances in horticulture, Vol 10 (2). Malhotra Publishing House New Delhi, pp. 1015-1058

  • Shamina A (1997) Biochemical studies on host-pathogen interactions in black pepper (Piper nigrum L.) infected with Phytophthora capsici. Ph.D. Dissertation, University of Calicut

  • Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539

    PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Steecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarr DEK, Alexander HM (2009) TIR-NBS-LRR genes are rare in monocots: evidence from diverse monocot orders. BMC Res Notes 2(1):197

    PubMed  PubMed Central  Google Scholar 

  • Umadevi P, Suraby EJ, Ananaraj M, Nepolean T (2019) Identification of stable reference gene for transcript normalization in black pepper-Phytophthora capsici pathosystem. Physiol Mol Biol Pla 25(4):945–952

    CAS  Google Scholar 

  • Vandana VV, Bhai RS (2018) Differential expression of PR genes in response to Phytophthora capsici inoculation in resistant and susceptible black pepper (Piper nigrum L.) lines. Eur J Plant Pathol 150(3):713–724

  • Vandana VV, Bhai RS, Shamina A (2014) Biochemical defense responses of black pepper (Piper nigrum L.) lines to Phytophthora capsici. Physiol Mol Plant Path 88:18e27

    Google Scholar 

  • Yang S, Zhang X, Yue JX, Tian D, Chen JQ (2008) Recent duplications dominate NBS-encoding gene expansion in two woody species. Mol Gen Genomics 280:187–198

    CAS  Google Scholar 

  • Zhang Y, Wang J, Zhang X, Chen JQ, Tian D, Yang S (2009) Genetic signature of rice domestication shown by a variety of genes. J Mol Evol 68:393–406

    CAS  PubMed  Google Scholar 

  • Zhang YL, Li DW, Gong ZH, Wang JE, Yin YX, Ji JJ (2013) Genetic determinants of the defense response of resistant and susceptible pepper (Capsicum annuum) cultivars infected with Phytophthora capsici (Oomycetes; Pythiaceae). Genet Mol Res 12:3605–3621

    CAS  PubMed  Google Scholar 

  • Zhou Z, Bar I, Sambasivam PT, Ford R (2019) Determination of the key resistance gene analogs involved in Ascochyta rabiei recognition in chickpea. Front Plant Sci 10:644

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors extend their gratitude to the Indian Council of Agriculture Research (ICAR) for financial support through ORP on Phytophthora, Fusarium and Ralstonia diseases of horticultural and field crops (PhytoFuRa). The authors acknowledge Dr. Santhosh J Eapen and Mrs. Rosana OB, DISC, ICAR- IISR, Kozhikode for bioinformatics support. The authors are thankful to Dr. Johnson K George, ICAR- IISR, Kozhikode for sharing data of leaf transcriptome of P. nigrum L. The authors are also grateful to Huasong Wu, Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning, Hainan 571533, China, for sharing data of fruit transcriptome of P. nigrum L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kantipudi Nirmal Babu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suraby, E.J., Prasath, D., Babu, K.N. et al. Identification of resistance gene analogs involved in Phytophthora capsici recognition in black pepper (Piper nigrum L.). J Plant Pathol 102, 1121–1131 (2020). https://doi.org/10.1007/s42161-020-00586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-020-00586-3

Keywords

Navigation