Skip to main content
Log in

Effect of substitutional and vacancy defects on the electrical and mechanical properties of 2D-hexagonal boron nitride

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Defects in the nanoscale are common in the 2D materials irrespective of the fabricated method. Material performance gets significantly affected due to the presence of defects in 2D materials. In the present study, electronic and mechanical properties of 2D-hexagonal boron nitride (hBN) are investigated. At the electronic scale, the formation energies, band structures were obtained for pristine and defected hBN. The substitutional defects of carbon (C-at-NS, C-at-BS) and oxygen (O-at-NS, O-at-BS) at boron and nitrogen sites, single vacancy defects (BV, NV) and triangular vacancies (3B + N)v and (3N + B)v of boron and nitrogen, and Stone-Thrower-Wales (STW) type-1 and type-2 defects were considered. We found that with the inclusion of defects in 2D-hBN, the bandgap decreases, and carbon substitution at the boron site produces n-type characteristics, whereas substitution of carbon at the nitrogen site produces p-type characteristics. Boron vacancies increased the p-type character. At the atomistic scale, stiffness, ultimate tensile strength, and fracture strain were simulated for the pristine and defected hBN with molecular dynamics (MD) simulations using Tersoff potential. We found that the vacancy defects dominated by Boron atoms are energetically favorable and shift the electric conductivity from insulating to conducting. The stiffness and ultimate tensile strain of the 2D-hBN in the zigzag direction are higher than that of armchair direction. A strength reduction of around ~ 50% is observed with a defect concentration of 2.1%. It is observed that pristine and defective 2D-hBN is stronger in ZZ than AC configuration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data is available on request.

References

  1. Geim AK, Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U. S. A. 102:10451–10453

  2. Zhang, Y Feng, F Wang, Z Yang and J Wang, “Two-dimensional hexagonal boron nitride (2D-hBN): synthesis, properties, and applications,” J Mater Chem C vol. 5, pp. 11992–12022, 2017

  3. Zeng H, Zhi C, Zhang Z, Wei X, Wang X, Guo W, Bando Y, Golberg D (2010) “White graphenes”: boron nitride nanoribbons via boron nitride nanotube unwrapping. Nano Lett. 10:5049–5055

    CAS  PubMed  Google Scholar 

  4. Liu Y, Bhowmick S, Yakobson BI (2011) BN white graphene with “colorful” edges: the energies and morphology. Nano Lett. 11:3113–3116

    CAS  PubMed  Google Scholar 

  5. Topsakal M, Aktürk E, Ciraci S (2009) First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Physical Review B - Condensed Matter and Materials Physics 79:1–11

    Google Scholar 

  6. N L McDougall, R J Nicholls, J G Partridge and D G McCulloch, “The near edge structure of hexagonal boron nitride,” Microscopy and Microanalysis, vol. 20, pp. 1053–1059, 4, 2014

  7. Zunger A, Katzir A, Halperin A (1976) Optical properties of hexagonal boron nitride. Phys. Rev. B 13:5560–5573

    CAS  Google Scholar 

  8. Watanabe K, Taniguchi T, Kanda H (2004) Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 3:404–409

    CAS  PubMed  Google Scholar 

  9. Eichler J, Lesniak C (2008) Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc. 28:1105–1109

    CAS  Google Scholar 

  10. Song LL, Zheng XH, Hao H, Lan J, Wang XL, Zeng Z (2014) Tuning the electronic and magnetic properties in zigzag boron nitride nanoribbons with carbon dopants. Comput. Mater. Sci. 81:551–555

    CAS  Google Scholar 

  11. Zhang Z, Guo W (2008) Energy-gap modulation of BN ribbons by transverse electric fields: first-principles calculations. Physical Review B - Condensed Matter and Materials Physics 77:1–5

    Google Scholar 

  12. Zhang YG, Cheng GD, Peng W, Tang Z (2014) Spintronic and electronic properties of a positively charged N BVN center in hexagonal boron nitride monolayer. Comput. Mater. Sci. 95:316–319

    CAS  Google Scholar 

  13. Sheng W, Amin I, Neumann C, Dong R, Zhang T, Wegener E, Chen WL, Förster P, Tran HQ, Löffler M, Winter A, Rodriguez RD, Zschech E, Ober CK, Feng X, Turchanin A, Jordan R (2019) Polymer brushes on hexagonal boron nitride. Small 15:1–8

    Google Scholar 

  14. P Ares, T Cea, M Holwill, Y B Wang, R Roldán, F Guinea, D V Andreeva, L Fumagalli, K S Novoselov, and C R Woods, “Piezoelectricity in monolayer hexagonal boron nitride,” Advanced Materials, vol. 32, p. 1905504, 1 2020

  15. Darwish AA, Hassan MH, Abou Mandour MA, Maarouf AA (2019) Mechanical properties of defective double-walled boron nitride nanotubes for radiation shielding applications: a computational study. Comput. Mater. Sci. 156:142–147

    CAS  Google Scholar 

  16. L. Horváth, A. Magrez, D. Golberg, C. Zhi, Y. Bando, R. Smajda, E. Horváth, L. Forró, and B. Schwaller, “In vitro investigation of the cellular toxicity of boron nitride nanotubes,” ACS Nano, vol. 5, pp. 3800–3810, 5, 2011

  17. D. Lahiri, V. Singh, A. K. Keshri, S. Seal, and A. Agarwal, “Apatite formability of boron nitride nanotubes,” Nanotechnology, vol. 22, 2011

  18. Farshid B, Lalwani G, Shir Mohammadi M, Simonsen J, Sitharaman B (2017) Boron nitride nanotubes and nanoplatelets as reinforcing agents of polymeric matrices for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials 105:406–419

    CAS  PubMed  Google Scholar 

  19. C. Jin, F. Lin, K. Suenaga and S. Iijima, “Fabrication of a freestanding boron nitride single layer and its defect assignments,” Physical Review Letters, vol. 102, p. 195505, 5 2009

  20. Paciĺ D, Meyer JC, Girit Ç, Zettl A (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92:1–4

    Google Scholar 

  21. Lin Y, Williams TV, Connell JW (2010) Soluble, exfoliated hexagonal boron nitride nanosheets. J. Phys. Chem. Lett. 1:277–283

    Google Scholar 

  22. N. Wang, G. Yang, H. Wang, C. Yan, R. Sun, and C.-P. Wong, “A universal method for large-yield and high-concentration exfoliation of two-dimensional hexagonal boron nitride nanosheets,” Materials Today, vol. 27, pp. 33–42, 7 2019

  23. A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare and C. N. R. Rao, “Graphene analogues of BN: novel synthesis and properties,” ACS Nano, vol. 4, pp. 1539–1544, 3, 2010

  24. Rafiei-Sarmazdeh Z, Jafari SH, Ahmadi SJ (2020) A green chemistry approach for facile synthesis of functionalized boron nitride nanosheets. Journal of Nanostructures 10:64–75

    Google Scholar 

  25. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Hofmann, D. Nezich, J. F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios and J. Kong, “Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition,” Nano Letters, vol. 12, pp. 161–166, 1 2012

  26. Solozhenko VL, Turkevich VZ, Holzapfel WB (1999) Refined phase diagram of boron nitride. J. Phys. Chem. B 103:2903–2905

    CAS  Google Scholar 

  27. Meyer JC, Chuvilin A, Algara-Siller G, Biskupek J, Kaiser U (2009) Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. Nano Lett. 9:2683–2689

    CAS  PubMed  Google Scholar 

  28. L.-C. Yin, H.-M. Cheng and R. Saito, “Triangle defect states of hexagonal boron nitride atomic layer: density functional theory calculations,” Physical Review B, vol. 81, p. 153407, 4 2010

  29. D.-H. Kim, H.-S. Kim, M. W. Song, S. Lee, and S. Y. Lee, “Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy,” Nano Convergence, vol. 4, p. 13, 12 2017

  30. S. Azevedo, J. R. Kaschny, C. M. C. Castilho, and F. Brito Mota, “A theoretical investigation of defects in a boron nitride monolayer,” Nanotechnology, vol. 18, p. 495707, 12 2007

  31. Deng X, Zhang D, Si M, Deng M (2011) The improvement of the adsorption abilities of some gas molecules on g-BN sheet by carbon doping. Physica E: Low-Dimensional Systems and Nanostructures 44:495–500

    CAS  Google Scholar 

  32. McDougall NL, Partridge JG, Nicholls RJ, Russo SP, McCulloch DG (2017) Influence of point defects on the near edge structure of hexagonal boron nitride. Phys. Rev. B 96:1–9

    Google Scholar 

  33. B. He, M. Qiu, M. F. Yuen, and W. J. Zhang, “Electrical properties and electronic structure of Si-implanted hexagonal boron nitride films,” Applied Physics Letters, vol. 105, 2014

  34. S. Majety, T. C. Doan, J. Li, J. Y. Lin and H. X. Jiang, “Electrical transport properties of Si-doped hexagonal boron nitride epilayers,” AIP Adv., vol. 3, pp. 0–8, 2013

  35. Sun F, Hao Z, Liu G, Wu C, Lu S, Huang S, Liu C, Hong Q, Chen X, Cai D, Kang J (2018) P-type conductivity of hexagonal boron nitride as a dielectrically tunable monolayer: modulation doping with magnesium. Nano-scale 10:4361–4369

    CAS  Google Scholar 

  36. Sevik C, Kinaci A, Haskins JB, ÇaǧIn T (2011) Characterization of thermal transport in low-dimensional boron nitride nanostructures. Physical Review B - Condensed Matter and Materials Physics 84:1–7

    Google Scholar 

  37. Jam AN, Abadi R, Izadifar M, Rabczuk T (2018) Molecular dynamics study on the mechanical properties of carbon-doped single-layer polycrystalline boron nitride nanosheets. Comput. Mater. Sci. 153:16–27

    CAS  Google Scholar 

  38. Vijayaraghavan V, Zhang L (2019) Nanomechanics of single-layer hybrid boron nitride–carbon nanosheets: a molecular dynamics study. Comput. Mater. Sci. 159:376–384

    CAS  Google Scholar 

  39. Y. Y. Zhang, Q. X. Pei, Z. D. Sha, and Y. W. Zhang, “A molecular dynamics study of the mechanical properties of h-BCN monolayer using a modified Tersoff interatomic potential,” Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 383, pp. 2821–2827, 2019

  40. P. Giannozzi, S. Baroni, N. Bonini, M. calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. umari and R. M. Wentzcovitch, “Quantum Espresso: a modular and open-source software project for quantum simulations of materials,” Journal of Physics: Condensed Matter, vol. 21, p. 395502, 9 2009

  41. J. P. Perdew, K. Burke and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, pp. 3865–3868, 10, 1996

  42. S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal of Computational Physics, vol. 117, pp. 1–19, 3 1995

  43. A. Kınacı, J. B. Haskins, C. Sevik and T. Çağın, “Thermal conductivity of BN-C nanostructures,” Physical Review B, vol. 86, p. 115410, 9 2012

  44. Jensen BD, Wise KE, Odegard GM (2015) The effect of time step, thermostat, and strain rate on ReaxFF simulations of mechanical failure in diamond, graphene, and carbon nanotube. J. Comput. Chem. 36:1587–1596

    CAS  PubMed  Google Scholar 

  45. Choe JI, Kim B (2000) Determination of proper time step for molecular dynamics simulation. Bull. Kor. Chem. Soc. 21:419–424

    CAS  Google Scholar 

  46. Horstemeyer MF, Baskes MI (1999) Atomistic finite deformation simulations: a discussion on length scale effects in relation to mechanical stresses. J. Eng. Mater. Technol. 121:114

    Google Scholar 

  47. Thompson AP, Plimpton SJ, Mattson W (2009) General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. J. Chem. Phys. 131:154107

    PubMed  Google Scholar 

  48. J. Tersoff, “New empirical approach for the structure and energy of covalent systems,” Physical Review B, vol. 37, pp. 6991–7000, 4, 1988

  49. K. Albe, W. Möller and K.-H. Heinig, “Computer simulation and boron nitride,” Radiation Effects and Defects in Solids, vol. 141, pp. 85–97, 6 1997

  50. Albe K, Möller W (1998) Modelling of boron nitride: atomic-scale simulations on thin film growth. Comput. Mater. Sci. 10:111–115

    CAS  Google Scholar 

  51. Lindsay L, Broido DA (2011) Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Physical Review B - Condensed Matter and Materials Physics 84:1–6

    Google Scholar 

  52. K. Matsunaga, C. Fisher and H. Matsubara, “Tersoff potential parameters for simulating cubic boron carbonitrides,” Japanese Journal of Applied Physics, Part 2: Letters, vol. 39, 2000

  53. A. J. Stone and D. J. Wales, “Theoretical studies of icosahedral C60 and some related species,” Chemical Physics Letters, vol. 128, pp. 501–503, 8, 1986

  54. Chen W, Li Y, Yu G, Zhou Z, Chen Z (2009) Electronic structure and reactivity of boron nitride nanoribbons with stone-wales defects. J. Chem. Theory Comput. 5:3088–3095

    CAS  PubMed  Google Scholar 

  55. Oba F, Togo A, Tanaka I, Watanabe K, Taniguchi T (2010) Doping of hexagonal boron nitride via intercalation: a theoretical prediction. Physical Review B - Condensed Matter and Materials Physics 81:20–23

    Google Scholar 

  56. Mosuang TE, Lowther JE (2002) Influence of defects on the h-BN to c-BN transformation. Physical Review B - Condensed Matter and Materials Physics 66:1–5

    Google Scholar 

  57. Orellana W, Chacham H (2000) Energetics of carbon and oxygen impurities and their interaction with vacancies in cubic boron nitride. Physical Review B - Condensed Matter and Materials Physics 62:10135–10141

    CAS  Google Scholar 

  58. Hu ML, Yu Z, Yin JL, Zhang CX, Sun LZ (2012) A DFT-LDA study of electronic and optical properties of hexagonal boron nitride under uniaxial strain. Comput. Mater. Sci. 54:165–169

    CAS  Google Scholar 

  59. G. E. D. Viana, A. M. Silva, F. U. C. Barros, F. J. A. M. Silva, E. W. S. Caetano, and J. J. S. Melo, “Thermal stability and electronic properties of boron nitride nanoflakes,” J Mol Model. 2020; 26(5):100. Published 2020 Apr 15. doi:https://doi.org/10.1007/s00894-020-4321-z

  60. Perdew JP, Levy M (1983) Physical content of the exact Kohn-Sham orbital energies: band gaps and derivative discontinuities. Phys. Rev. Lett. 51:1884–1887

    CAS  Google Scholar 

  61. Gao M, Adachi M, Lyalin A, Taketsugu T (2016) Long range functionalization of h-BN monolayer by carbon doping. J. Phys. Chem. C 120:15993–16001

    CAS  Google Scholar 

  62. Shirodkar SN, Waghmare UV, Fisher TS, Grau-Crespo R (2015) Engineering the electronic bandgaps and band edge positions in carbon-substituted 2D boron nitride: a first-principles investigation. Phys. Chem. Chem. Phys. 17:13547–13552

    CAS  PubMed  Google Scholar 

  63. Wu J, Wang B, Wei Y, Yang R, Dresselhaus M (2013) Mechanics and mechanically tunable bandgap in single-layer hexagonal boron-nitride. Materials Research Letters 1:200–206

    CAS  Google Scholar 

  64. Li N, Ding N, Qu S, Liu L, Guo W, Wu CML (2017) Mechanical properties and failure behavior of hexagonal boron nitride sheets with nano-cracks. Comput. Mater. Sci. 140:356–366

    CAS  Google Scholar 

  65. Thomas S, Ajith KM, Chandra S, Valsakumar MC (2015) Temperature-dependent structural properties and bending rigidity of pristine and defective hexagonal boron nitride. Journal of Physics Condensed Matter 27:315302

    PubMed  Google Scholar 

  66. S. Thomas, K. M. Ajith and M. C. Valsakumar, “Effect of ripples on the finite temperature elastic properties of hexagonal boron nitride using strain-fluctuation method,” Superlattices and Microstructures, vol. 111, pp. 360–372, 11, 2017

  67. López-Polín G et al (2015) Increasing the elastic modulus of graphene by controlled defect creation. Nat. Phys. 11(1):26–31

    Google Scholar 

  68. Abadi R, Uma RP, Izadifar M, Rabczuk T (2016) The effect of temperature and topological defects on fracture strength of grain boundaries in single-layer polycrystalline boron-nitride nanosheet. Comput. Mater. Sci. 123:277–286

    CAS  Google Scholar 

  69. Mortazavi B, Cuniberti G (2014) Mechanical properties of polycrystalline boron nitride nanosheets. RSC Adv. 4:19137–19143

    CAS  Google Scholar 

  70. T. Han, Y. Luo and C. Wang, “Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets,” Journal of Physics D: Applied Physics, vol. 47, p. 025303, 1 2014

  71. S. Zhao and J. Xue, “Mechanical properties of hybrid graphene and hexagonal boron nitride sheets as revealed by molecular dynamic simulations,” Journal of Physics D: Applied Physics, vol. 46, 2013

  72. X. Qi-Lin, L. Zhen-Huan and T. Xiao-Geng, “The defect-induced fracture behaviors of hexagonal boron-nitride monolayer nanosheets under uniaxial tension,” Journal of Physics D: Applied Physics, vol. 48, p. 375502, 8 2015

  73. S. Thomas, K. M. Ajith, and M. C. Valsakumar, “Empirical potential influence and effect of temperature on the mechanical properties of pristine and defective hexagonal boron nitride,” Materials Research Express, vol. 4, p. 065005, 6 2017

Download references

Acknowledgments

Author T C Sagar likes to acknowledge the financial support received from IIT Hyderabad and MHRD for his doctoral studies.

Code availability

Opensource codes Quantum Espresso and Lammps. Links will be provided on request.

Author information

Authors and Affiliations

Authors

Contributions

Equal contributions.

Corresponding author

Correspondence to Viswanath Chinthapenta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, T.C., Chinthapenta, V. Effect of substitutional and vacancy defects on the electrical and mechanical properties of 2D-hexagonal boron nitride. J Mol Model 26, 192 (2020). https://doi.org/10.1007/s00894-020-04452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04452-y

Keywords

Navigation