Skip to main content

Advertisement

Log in

Enhancement of catalytic hydrogen evolution by NiS modification of ZnCo2O4 with cubic morphology

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

It was the constant pursuit of researchers to explore catalysts with higher catalytic activity, and the use of co-catalysts to modify the performance of photocatalytic materials had a significant effect on charge separation. In this paper, the non-precious metal NiS-modified ZnCo2O4 composite catalytic material prepared by hydrothermal method had high-efficiency catalytic performance. When the weight ratio of NiS to ZnCo2O4 was 12%, the optimal catalytic activity is 3.57 mmol g−1 h−1, which was more than twice that of ZnCo2O4. The presence of NiS not only improved the specific surface area of the catalyst and its ability to respond to light, but the close interface formed by the combination of the two monomer phases accelerated the transfer and the utilization of the photocharge on ZnCo2O4 to NiS, thereby promoting the separation of electron holes and improving the photocatalytic activity of the catalyst. According to the research results, the mechanism of hydrogen production in the photocatalytic system was revealed. In this paper, NiS was used to modify the bimetallic oxide with cubic appearance, which provided a new strategy for the development of new photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.Y. Chen, J.P. Wang et al., Facile synthesis of mesoporous ZnCo2O4 hierarchical microspheres and their excellent supercapacitor performance. Ceram. Int. 45, 8577–8584 (2019)

    CAS  Google Scholar 

  2. Y. Liu, W. Zhou et al., Electronic structure and optical properties of SrTiO3 codoped by W/Mo on different cationic sites with C/N from hybrid functional calculations. Comput. Mater. Sci. 146, 150–157 (2018)

    CAS  Google Scholar 

  3. X. Hao, Z. Jin, H. Yang et al., Peculiar synergetic effect of MoS2, quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution. Appl. Catal. B 210, 45–56 (2017)

    CAS  Google Scholar 

  4. P. Wang, S.Q. Xu et al., Ni nanoparticles as electron-transfer mediators and NiSx as interfacial active sites for coordinative enhancement of H2-evolution performance of TiO2. Chin. J. Catal. 40, 343–351 (2019)

    CAS  Google Scholar 

  5. X. Wang, H. Dong, Z. Hu et al., Fabrication of a Cu2O/Au/TiO2 composite film for efficient photocatalytic hydrogen production from aqueous solution of methanol and glucose. Mater. Sci. Eng. B 219, 10–19 (2017)

    CAS  Google Scholar 

  6. Y.X. Tang, X.S. Li et al., Noble metal-free ternary MoS2/Zn0.5Cd0.5S/g-C3N4 heterojunction composite for highly efficient photocatalytic H2 production. Mater. Res. Bull. 110, 214–222 (2019)

    Google Scholar 

  7. Y.Q. Jing, X.Y. Mu et al., Enhanced hydrogen evolution reaction of WS2-CoS2 heterostructure by synergistic effect. Int. J. Hydrogen Energy 44, 809–818 (2019)

    CAS  Google Scholar 

  8. H.J. Wu, J.L. Liu et al., Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124743 (2020)

    CAS  Google Scholar 

  9. C.I.N. Morgade, G.F. Cabeza, First-principles study of codoping TiO2 systems capable of improving the specific surface area and the dissociation of H2O to generate H2 and O2. Comput. Mater. Sci. 127, 204–210 (2017)

    CAS  Google Scholar 

  10. F. Chen, W. Luo et al., In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution. Appl. Surf. Sci. 430, 448–456 (2018)

    CAS  Google Scholar 

  11. L. Li, H. Yu, J. Xu et al., Rare earth element, Sm, modified graphite phase carbon nitride heterostructure for photocatalytic hydrogen production. New J. Chem. 43(4), 1716–1724 (2019)

    CAS  Google Scholar 

  12. J.H. Huang, J.Y. Liu et al., Enhanced photocatalytic H2 evolution by deposition of metal nanoparticles into mesoporous structure of g-C3N4. Colloids Surf. A 585(20), 124067 (2020)

    CAS  Google Scholar 

  13. H. Wu, Z. Zhao, G. Wu, Facile synthesis of FeCo layered double oxide/raspberry-like carbon microspheres with hierarchical structure for electromagnetic wave absorption. J Colloid Interface 566, 21–32 (2020)

    CAS  Google Scholar 

  14. Y.P. Zhang, Z.L. Jin et al., Charge separation and electron transfer routes modulated with Co-Mo-P over g-C3N4 photocatalyst. Mol. Catal. 462, 46–55 (2019)

    CAS  Google Scholar 

  15. Z. Liu, J. Xu, Y. Li et al., Hydrothermal synthesis of Co2P-modified MoS2: a highly efficient non-precious metal catalyst of light[J]. Ionics 2, 1–9 (2019)

    Google Scholar 

  16. J.G. Guo, Y. Liu, Y.J. Hao et al., Comparison of importance between separation efficiency and valence band position: The case of heterostructured Bi3O4Br/α-Bi2O3 photocatalysts. Appl. Catal. B 224, 841–853 (2018)

    CAS  Google Scholar 

  17. L.P. Zhang, G.H. Wang et al., Fabrication of flower-like direct Z-scheme β-Bi2O3/g-C3N4 photocatalyst with enhanced visible light photoactivity for Rhodamine B degradation. Appl. Surf. Sci. 436, 162–171 (2018)

    CAS  Google Scholar 

  18. W.J. Lee, K.H. Chung et al., Application of liquid phase plasma irradiation for H2 production of methanol/water over Ag-loaded TiO2 photocatalyst. Energy Procedia 144, 57–62 (2018)

    CAS  Google Scholar 

  19. H.G. Yu, W.J. Liu et al., Promoting the interfacial H2-evolution reaction of metallic Ag by Ag2S cocatalyst: a case study of TiO2/Ag-Ag2S photocatalyst. Appl. Catal. B 225, 415–423 (2018)

    CAS  Google Scholar 

  20. H.G. Yu, Y. Huang et al., Improved H2-generation performance of Pt/CdS photocatalyst by a dual-function TiO2 mediator for effective electron transfer and hole blocking. Ceram. Int. 45, 9807–9813 (2019)

    CAS  Google Scholar 

  21. Y.P. Wang, F.C. Jiang et al., In situ construction of CNT/CuS hybrids and their application in photodegradation for removing organic dyes. Nanomaterials 10, 178 (2020)

    Google Scholar 

  22. Y.X. Yan, H. Yang et al., Construction of Ag2S@CaTiO3 heterostructure photocatalysts for enhanced photocatalytic degradation of dyes. Desalin. Water Treat. 170, 349–360 (2019)

    CAS  Google Scholar 

  23. J.T. Liu, Y. Xue et al., ZnCo2O4 nanoparticles derived from dual-metal-organic-frameworks embedded in multiwalled carbon nanotubes: a favorable electrocatalyst for the water splitting. Electrochim. Acta 257, 233–242 (2017)

    CAS  Google Scholar 

  24. L.S. Lobo, K.A. Ruban, Structural and electrical properties of ZnCo2O4 spinel synthesized by sol-gel combustion method. J. Non-Cryst. Solids 505, 301–309 (2019)

    CAS  Google Scholar 

  25. J. Sun, S. Li, X. Han et al., Rapid hydrothermal synthesis of snowflake-like ZnCo2O4/ZnO mesoporous microstructures with excellent electrochemical performances. Ceram. Int. 45(9), 12243–12250 (2019)

    CAS  Google Scholar 

  26. K.J. Lin, M. Qin et al., ZnCo2O4 nanorods as a novel class of high-performance adsorbent for removal of methyl blue. Adv. Powder Technol. 29, 1933–1939 (2018)

    CAS  Google Scholar 

  27. J. Wang, G.H. Wang et al., Insight into charge carrier separation and solar-light utilization: rGO decorated 3D ZnO hollow microspheres for enhanced photocatalytic hydrogen evolution. J. Colloid Interface Sci. 564, 322–332 (2020)

    CAS  Google Scholar 

  28. Y. Li, J. Xu, Z. Liu et al., Performance of amorphous CoSx/oxygen vacancies ZnO heterojunction photocatalytic hydrogen evolution[J]. J. Mater. Sci. Mater. Electron. 30, 246–258 (2019)

    CAS  Google Scholar 

  29. G. Huang, Y. Yang, H. Sun et al., Defective ZnCo2O4 with Zn vacancies: synthesis, property and electrochemical application. J. Alloys Compd. 724, 1149–1156 (2017)

    CAS  Google Scholar 

  30. M. Qin, L.M. Zhang et al., Dual-template hydrothermal synthesis of multi-channel porous NiCo2O4 hollow spheres as high-performance electromagnetic wave absorber. Appl. Surf. Sci. 515, 146132 (2020)

    CAS  Google Scholar 

  31. J. Chen, J. Zhan, E. Lu et al., Facile template-free fabrication of mesoporous ZnCo2O4 fibers with enhanced photocatalytic activity under visible-light irradiation. Mater. Lett. 220, 66–69 (2018)

    CAS  Google Scholar 

  32. C. Jun, Z. Jing, Z. Yumeng et al., Construction of a novel ZnCo2O4/Bi2O3 heterojunction photocatalyst with enhanced visible light photocatalytic activity. Chin. Chem. Lett. 30, 735–738 (2019)

    Google Scholar 

  33. S.B. Kokane, S.R. Suryawanshi, R. Sasikala et al., Architecture of 3D ZnCo2O4 marigold flowers: influence of annealing on cold emission and photocatalytic behavior. Mater. Chem. Phys. 194, 55–64 (2017)

    CAS  Google Scholar 

  34. X. Zheng, Z. Zhang, S. Meng et al., Regulating charge transfer over 3D Au/ZnO hybrid inverse opal toward efficiently photocatalytic degradation of bisphenol A and photoelectrochemical water splitting[J]. Chem. Eng. J. 393, 124676 (2020)

    CAS  Google Scholar 

  35. S. Liang, B. Han, X. Liu et al., 3D spatially branched hierarchical Z-scheme CdS-Au nanoclusters-ZnO hybrids with boosted photocatalytic hydrogen evolution[J]. J. Alloys Compd. 754, 105–113 (2018)

    CAS  Google Scholar 

  36. S.R. Kadam, S.R. Suryawanshi, R.P. Panmand et al., Architecture of 2D MoS2 nanosheets and 3D CdMoS4 marigold flowers: consequence of annealing on field emission performance. Microporous Mesoporous Mater. 225, 573–579 (2016)

    CAS  Google Scholar 

  37. J. Li, K. Liu, J. Xue et al., CQDs preluded carbon-incorporated 3D burger-like hybrid ZnO enhanced visible-light-driven photocatalytic activity and mechanism implication. J. Catal. 369, 450–461 (2019)

    CAS  Google Scholar 

  38. J.Q. Wen, J. Xie et al., Fabricating the Robust g-C3N4 Nanosheets/carbons/NiS multiple heterojunctions for enhanced photocatalytic H2 generation: an insight into the trifunctional roles of Nanocarbons. ACS Sustain. Chem. Eng. 5, 2224–2236 (2017)

    CAS  Google Scholar 

  39. Y. Xia, S. Liang, L. Wu et al., Ultrasmall NiS decorated HNb3O8 nanosheeets as highly efficient photocatalyst for H2 evolution reaction. Catal. Today 330, 195–202 (2019)

    CAS  Google Scholar 

  40. L. Liu, X. Xu, Z. Si et al., Noble metal-free NiS/P-S codoped g-C3N4 photocatalysts with strong visible light absorbance and enhanced H2 evolution activity. Catal. Commun. 106, 55–59 (2017)

    Google Scholar 

  41. H. Zhao, H.Z. Zhang et al., A photochemical synthesis route to typical transition metal sulfides as highly efficient cocatalyst for hydrogen evolution: from the case of NiS/g-C3N4. Appl. Catal. B 225, 284–290 (2018)

    CAS  Google Scholar 

  42. J. Wen, H. Li, S. Ma, K. He, Y. Xu, Y. Fang, W. Liu, Q. Gao, Enhanced visible-light H2 evolution of g-C3N4 photocatalysts via the synergetic effect of amorphous NiS and cheap metal-free carbon black nanoparticles as co-catalysts. Appl. Surf. Sci. 358, 204–212 (2015)

    CAS  Google Scholar 

  43. J. Hong, Y. Wang, Y. Wang et al., Noble-metal-free NiS/C3N4 for efficient photocatalytic hydrogen evolution from water. Chemsuschem 6(12), 2263–2268 (2013)

    CAS  Google Scholar 

  44. Z. Chen, S.B. Yang, Z.F. Tian et al., NiS and graphene as dual cocatalysts for the enhanced photocatalytic H2 production activity of g-C3N4. Appl. Surf. Sci. 469, 657–665 (2019)

    CAS  Google Scholar 

  45. N.X. Li, H.L. Huang et al., Noble-metal-free MOF derived hollow CdS/TiO2 decorated with NiS cocatalyst for efficient photocatalytic hydrogen evolution. Appl. Surf. Sci. 476, 378–386 (2019)

    CAS  Google Scholar 

  46. W. Han, J. Wang, X. Li et al., One-pot solvothermal synthesized CoS2@MoS2 nanocomposites for selective reduction coupling reaction to synthesize imines. Catal. Commun. 124, 86–91 (2019)

    CAS  Google Scholar 

  47. H. Chen, J. Wang, X. Han et al., Facile synthesis of mesoporous ZnCo2O4 hierarchical microspheres and their excellent supercapacitor performance. Ceram. Int. 45, 8577–8584 (2019)

    CAS  Google Scholar 

  48. Y.X. Yan, H. Yang et al., Evolution of Bi nanowires from BiOBr nanoplates through a NaBH4 reduction method with enhanced photodegradation performance. Environ. Eng. Sci. 37, 64–77 (2020)

    CAS  Google Scholar 

  49. X. Ke, K. Dai, G. Zhu et al., In situ photochemical synthesis noble-metal-free NiS on CdS-diethylenetriamine nanosheets for boosting photocatalytic H2 production activity. Appl. Surf. Sci. 481, 669–677 (2019)

    CAS  Google Scholar 

  50. Y.J. Yuan, Z. Li, S. Wu et al., Role of two-dimensional nanointerfaces in enhancing the photocatalytic performance of 2D–2D MoS2/CdS photocatalysts for H2 production. Chem. Eng. J. 350, 335–343 (2018)

    CAS  Google Scholar 

  51. Y.J. Yuan, Z.K. Shen, S.T. Wu et al., Liquid exfoliation of g-C3N4 nanosheets to construct 2D–2D MoS2/g-C3N4 photocatalyst for enhanced photocatalytic H2 production activity. Appl. Catal. B Environ. 246, 120–128 (2019)

    CAS  Google Scholar 

  52. A.H. Yan, X.W. Shi, F. Huang et al., Efficient photocatalytic H2 evolution using NiS/ZnIn2S4 heterostructures with enhanced charge separation and interfacial charge transfer. Appl. Catal. B 250, 163–170 (2019)

    CAS  Google Scholar 

  53. N.A. Putri, V. Fauzia, S. Iwan et al., Mn-doping-induced photocatalytic activity enhancement of ZnO nanorods prepared on glass substrates. Appl. Surf. Sci. 439, 285–297 (2018)

    CAS  Google Scholar 

  54. G.P. Zhang, D.Y. Chen, N.J. Li et al., Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity. Appl. Catal. B 250, 313–324 (2019)

    CAS  Google Scholar 

  55. Y.J. Yuan, Y. Yang, Z.J. Li et al., Promoting charge separation in g-C3N4/graphene/MoS2 photocatalysts by two-dimensional nanojunction for enhanced photocatalytic H2 production. ACS Appl. Energy Mater. 1(4), 1400–1407 (2018)

    CAS  Google Scholar 

  56. L.J. Li, J. Xu, J.P. Ma et al., A bimetallic sulfide CuCo2S4 with good synergistic effect was constructed to drive high performance photocatalytic hydrogen evolution. J. Colloid Interface Sci. 552, 17–26 (2019)

    CAS  Google Scholar 

  57. X. Ke et al., In situ photochemical synthesis noble-metal-free NiS on CdS-diethylenetriamine nanosheets for boosting photocatalytic H2 production activity. Appl. Surf. Sci. 481, 669–677 (2019)

    CAS  Google Scholar 

  58. Y.B. Li, Z.L. Jin, H. Liu et al., Unique photocatalytic activities of transition metal phosphide for hydrogen evolution. J. Colloid Interface Sci. 541, 287–299 (2019)

    CAS  Google Scholar 

  59. Y.B. Li, Z.L. Jin, X.Q. Hao et al., Insights into the unique role of cobalt phosphide for boosting hydrogen evolution activity based on MIL-125-NH2. Int. J. Hydrogen Energy 44, 17909–17921 (2019)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Xixia District Science and Technology Plan Project, Natural Science Foundation of Ningxia Province (NZ17262), Open Project of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University (2019-KF-36), and New Catalytic Process in Clean Energy Production (ZDZX201803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Ethics declarations

Conflict of interest

There are no conflicts of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, M., Xu, J., Li, J. et al. Enhancement of catalytic hydrogen evolution by NiS modification of ZnCo2O4 with cubic morphology. J Mater Sci: Mater Electron 31, 12026–12040 (2020). https://doi.org/10.1007/s10854-020-03833-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03833-6

Navigation