Skip to main content
Log in

New RTDs with enhanced operation based on black phosphorus–graphene heterostructures and a semianalytical vdW tunneling model

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Two new vertical resonant tunneling devices (RTDs) of different sizes are proposed herein to achieve negative differential resistance with enhanced tunneling and peak-to-valley ratio (PVR) stability. The proposed structures are of the form n+pp+ (S2) and n+–[pn+]–pp+ (S1) with different electrodes made of parallel graphene nanoribbon and graphene sheet (S2) or bilayer graphene (S1). The results of the simulations show a PVR of 3–3.5 depending on the geometry of the structure, with a maximum current of 10 μA. Also, robust PVR values in the range of 1.2–1.5 are obtained for these structures for a wide range of dimensions. An approximate analytical model for the IV curve under the assumption of a vertical van der Waals bonding stacked structure as equivalent to the complex horizontal channel is introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kang, E.S., Ismail, R.: Analytical performance of 3 m and 3 m+1 armchair graphene nanoribbons under uniaxial strain. Nanoscale Res. Lett. 9, 1–8 (2014). https://doi.org/10.1186/1556-276X-9-598

    Article  Google Scholar 

  2. Ciriminna, R., Zhang, N., Yang, M.Q., Meneguzzo, F., Xu, Y.J., Pagliaro, M.: Commercialization of graphene-based technologies: a critical insight. Chem. Commun. 51, 7090–7095 (2015). https://doi.org/10.1039/c5cc01411e

    Article  Google Scholar 

  3. Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S., Yanwu, Z., An, J., Ruoff, R.S.: Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008). https://doi.org/10.1021/nl802558y

    Article  Google Scholar 

  4. Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008). https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  5. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  6. Yadav, R., Dixit, C.K.: Synthesis, characterization and prospective applications of nitrogen-doped graphene: a short review. J. Sci. Adv. Mater. Devices 2, 141–149 (2017). https://doi.org/10.1016/j.jsamd.2017.05.007

    Article  Google Scholar 

  7. Gaskell, J., Eaves, L., Novoselov, K.S., Mishchenko, A., Geim, A.K., Fromhold, T.M., Greenaway, M.T.: Graphene-hexagonal boron nitride resonant tunneling diodes as high-frequency oscillators. Appl. Phys. Lett. 107, 1–5 (2015). https://doi.org/10.1063/1.4930230

    Article  Google Scholar 

  8. Mizuta, H., Tanoue, T.: The Physics and Applications of Resonant Tunnelling Diodes. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  9. Yokoyama, H., Sugiyama, H., Asada, M., Teranishi, A., Suzuki, S.: Fundamental oscillation of resonant tunneling diodes above 1 THz at room temperature. Appl. Phys. Lett. 97, 242102 (2010). https://doi.org/10.1063/1.3525834

    Article  Google Scholar 

  10. Tian, W., Li, W., Yu, W., Liu, X.: A review on lattice defects in graphene: types, generation, effects and regulation. Micromachines 8, 163 (2017). https://doi.org/10.3390/mi8050163

    Article  Google Scholar 

  11. Ferrari, A.C., Bonaccorso, F., Fal’ko, V., Novoselov, K.S., Roche, S., Bøggild, P., Borini, S., Koppens, F.H.L., Palermo, V., Pugno, N., Garrido, J.A., Sordan, R., Bianco, A., Ballerini, L., Prato, M., Lidorikis, E., Kivioja, J., Marinelli, C., Ryhänen, T., Morpurgo, A., Coleman, J.N., Nicolosi, V., Colombo, L., Fert, A., Garcia-Hernandez, M., Bachtold, A., Schneider, G.F., Guinea, F., Dekker, C., Barbone, M., Sun, Z., Galiotis, C., Grigorenko, A.N., Konstantatos, G., Kis, A., Katsnelson, M., Vandersypen, L., Loiseau, A., Morandi, V., Neumaier, D., Treossi, E., Pellegrini, V., Polini, M., Tredicucci, A., Williams, G.M., Hee Hong, B., Ahn, J.-H., Min Kim, J., Zirath, H., van Wees, B.J., van der Zant, H., Occhipinti, L., Di Matteo, A., Kinloch, I.A., Seyller, T., Quesnel, E., Feng, X., Teo, K., Rupesinghe, N., Hakonen, P., Neil, S.R.T., Tannock, Q., Löfwander, T., Kinaret, J.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598–4810 (2015). https://doi.org/10.1039/C4NR01600A

    Article  Google Scholar 

  12. Ferry, D.K.: The role of substrate for transport in graphene. In: IEEE Nanotechnology Materials and Devices Conference (NMDC2012), pp. 43–48 (2012)

  13. Khoshbaten, M., Hosseini, S.E.: Design and AC modeling of a bipolar GNR-h-BN RTD with enhanced tunneling properties and high robustness to edge defects. IEEE Trans. Electron Devices 66, 3675–3682 (2019). https://doi.org/10.1109/TED.2019.2924451

    Article  Google Scholar 

  14. Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372 (2014)

    Article  Google Scholar 

  15. Qiao, J., Kong, X., Hu, Z.X., Yang, F., Ji, W.: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. (2014). https://doi.org/10.1038/ncomms5475

    Article  Google Scholar 

  16. Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014). https://doi.org/10.1038/ncomms5458

    Article  Google Scholar 

  17. Hong, T., Chamlagain, B., Lin, W., Chuang, H.-J., Pan, M., Zhou, Z., Xu, Y.-Q.: Polarized photocurrent response in black phosphorus field-effect transistors. Nanoscale 6, 8978–8983 (2014). https://doi.org/10.1039/c4nr02164a

    Article  Google Scholar 

  18. Buscema, M., Groenendijk, D.J., Steele, G.A., van der Zant, H.S.J., Castellanos-Gomez, A.: Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating. Nat. Commun. 5, 4651 (2014). https://doi.org/10.1038/ncomms5651

    Article  Google Scholar 

  19. Wu, J., Mao, N., Xie, L., Xu, H., Zhang, J.: Identifying the crystalline orientation of black phosphorus using angle-resolved polarized Raman spectroscopy. Angew. Chem. Int. Ed. 54, 2366–2369 (2015). https://doi.org/10.1002/anie.201410108

    Article  Google Scholar 

  20. Cai, Y., Zhang, A., Ping Feng, Y., Zhang, C.: Switching and rectification of a single light-sensitive diarylethene molecule sandwiched between graphene nanoribbons. J. Chem. Phys. (2011). https://doi.org/10.1063/1.3657435

    Article  Google Scholar 

  21. Cai, Y., Zhang, G., Zhang, Y.W.: Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 4, 1–6 (2014). https://doi.org/10.1038/srep06677

    Article  Google Scholar 

  22. Cai, Y., Zhang, G., Zhang, Y.-W.: Electronic properties of phosphorene/graphene and phosphorene/ hexagonal boron nitride heterostructures. J. Phys. Chem. C 119, 13929–13936 (2015). https://doi.org/10.1021/acs.jpcc.5b02634

    Article  Google Scholar 

  23. Liu, Y., Xu, F., Zhang, Z., Penev, E.S., Yakobson, B.I.: Two-dimensional mono-elemental semiconductor with electronically inactive defects: the case of phosphorus. Nano Lett. 14, 6782–6786 (2014). https://doi.org/10.1021/nl5021393

    Article  Google Scholar 

  24. Dai, J., Zeng, X.C.: Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett. 5, 1289–1293 (2014). https://doi.org/10.1021/jz500409m

    Article  Google Scholar 

  25. Fei, R., Yang, L.: Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett. 14, 2884–2889 (2014). https://doi.org/10.1021/nl500935z

    Article  Google Scholar 

  26. Rodin, A.S., Carvalho, A., Castro Neto, A.H.: Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. (2014). https://doi.org/10.1103/PhysRevLett.112.176801

    Article  Google Scholar 

  27. Çakır, D., Sahin, H., Peeters, F.M.: Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B 90, 205421 (2014). https://doi.org/10.1103/PhysRevB.90.205421

    Article  Google Scholar 

  28. Peng, X., Wei, Q., Copple, A.: Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 90, 85402 (2014). https://doi.org/10.1103/PhysRevB.90.085402

    Article  Google Scholar 

  29. Padilha, J.E., Fazzio, A., da Silva, A.J.R.: van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating. Phys. Rev. Lett. 114, 66803 (2015). https://doi.org/10.1103/PhysRevLett.114.066803

    Article  Google Scholar 

  30. Liu, X., Wood, J.D., Chen, K.-S., Cho, E., Hersam, M.C.: In situ thermal decomposition of exfoliated two-dimensional black phosphorus. J. Phys. Chem. Lett. 6, 773–778 (2015). https://doi.org/10.1021/acs.jpclett.5b00043

    Article  Google Scholar 

  31. Island, J.O., Steele, G.A., van der Zant, H.S.J., Castellanos-Gomez, A.: Environmental instability of few-layer black phosphorus. 2D Mater. 2, 11002 (2015). https://doi.org/10.1088/2053-1583/2/1/011002

    Article  Google Scholar 

  32. Kuntz, K.L., Wells, R.A., Hu, J., Yang, T., Dong, B., Guo, H., Woomer, A.H., Druffel, D.L., Alabanza, A., Tománek, D., Warren, S.C.: Control of surface and edge oxidation on phosphorene. ACS Appl. Mater. Interfaces 9, 9126–9135 (2017). https://doi.org/10.1021/acsami.6b16111

    Article  Google Scholar 

  33. Cai, Y., Ke, Q., Zhang, G., Zhang, Y.-W.: Energetics, charge transfer, and magnetism of small molecules physisorbed on phosphorene. J. Phys. Chem. C 119, 3102–3110 (2015). https://doi.org/10.1021/jp510863p

    Article  Google Scholar 

  34. Koenig, S.P., Doganov, R.A., Schmidt, H., Castro Neto, A.H., Özyilmaz, B.: Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014). https://doi.org/10.1063/1.4868132

    Article  Google Scholar 

  35. Alva, V., Saleh, O., Lupas, A.N., Heide, L., Yang, H., Chi, N.C.N., Dallner, G., Andersson, B., Ernster, L., Appelkvist, E.L., Chojnacki, T., Dallner, G., Heide, L., Sontag, B., Muroya, A., Fukushima, N., Yazaki, K., Brandt, W., Schulze, D., Zakharova, S., Wessjohann, L., Leppik, R.A., Hamilton, J.A., Gibson, F., Boudker, O., Jin, Y., Gouaux, E., Brandt, W., Wessjohann, L.A., Noel, J.P., Richard, S.B., Keller, S., Stevenson, C.E.M., Heide, L., Lawson, D.M., Miao, Y., Wang, B., Cui, G., Poulter, C.D., Lohman, T., Janetka, J., Wang, J., Murphy, F., Ke, N., Fremont, D., Chai, J., Lohman, T.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 881–886 (2012)

    Google Scholar 

  36. Britnell, L., Geim, A.K., Novoselov, K.S., Gorbachev, R.V., Greenaway, M.T., Fromhold, T.M., Mishchenko, A., Eaves, L., Ponomarenko, L.A.: Resonant tunnelling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794–1795 (2013). https://doi.org/10.1038/ncomms2817

    Article  Google Scholar 

  37. Hsu, W.T., Zhao, Z.A., Li, L.J., Chen, C.H., Chiu, M.H., Chang, P.S., Chou, Y.C., Chang, W.H.: Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano 8, 2951–2958 (2014). https://doi.org/10.1021/nn500228r

    Article  Google Scholar 

  38. Nourbakhsh, A., Zubair, A., Dresselhaus, M.S., Palacios, T.: Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett. 16, 1359–1366 (2016). https://doi.org/10.1021/acs.nanolett.5b04791

    Article  Google Scholar 

  39. Lin, Y.C., Ghosh, R.K., Addou, R., Lu, N., Eichfeld, S.M., Zhu, H., Li, M.Y., Peng, X., Kim, M.J., Li, L.J., Wallace, R.M., Datta, S., Robinson, J.A.: Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nat. Commun. 6, 1–6 (2015). https://doi.org/10.1038/ncomms8311

    Article  Google Scholar 

  40. Yan, R., Fathipour, S., Han, Y., Song, B., Xiao, S., Li, M., Ma, N., Protasenko, V., Muller, D.A., Jena, D., Xing, H.G.: Esaki Diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett. 15, 5791–5798 (2015). https://doi.org/10.1021/acs.nanolett.5b01792

    Article  Google Scholar 

  41. Li, M., Esseni, D., Snider, G., Jena, D., Grace Xing, H.: Single particle transport in two-dimensional heterojunction interlayer tunneling field effect transistor. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4866076

    Article  Google Scholar 

  42. Feng, Z., Chen, B., Qian, S., Xu, L., Feng, L., Yu, Y., Zhang, R., Chen, J., Li, Q., Li, Q., Sun, C., Zhang, H., Liu, J., Pang, W., Zhang, D.: Chemical sensing by band modulation of a black phosphorus/molybdenum diselenide van der Waals hetero-structure. 2D Mater. 3, 1–9 (2016). https://doi.org/10.1088/2053-1583/3/3/035021

    Article  Google Scholar 

  43. Liu, F., Shi, Q., Wang, J., Guo, H.: Device performance simulations of multilayer black phosphorus tunneling transistors. Appl. Phys. Lett. 107, 1–6 (2015). https://doi.org/10.1063/1.4935752

    Article  Google Scholar 

  44. Ghosh, R.K., Mahapatra, S.: Monolayer transition metal dichalcogenide channel-based tunnel transistor. IEEE J. Electron Devices Soc. 1, 175–180 (2013). https://doi.org/10.1109/JEDS.2013.2292799

    Article  Google Scholar 

  45. Szabo, A., Koester, S.J., Luisier, M.: Ab-initio simulation of van der Waals MoTe2-SnS2 heterotunneling FETs for low-power electronics. IEEE Electron Device Lett. 36, 514–516 (2015). https://doi.org/10.1109/LED.2015.2409212

    Article  Google Scholar 

  46. Stradi, D., Martinez, U., Blom, A., Brandbyge, M., Stokbro, K.: General atomistic approach for modeling metal-semiconductor interfaces using density functional theory and nonequilibrium Green’s function. Phys. Rev. B 93, 155302 (2016)

    Article  Google Scholar 

  47. Teong, H., Lam, K.-T., Khalid, S.B., Liang, G.: Shape effects in graphene nanoribbon resonant tunneling diodes: a computational study. J. Appl. Phys. 105, 1–6 (2009). https://doi.org/10.1063/1.3115423

    Article  Google Scholar 

  48. Smidstrup, S., Markussen, T., Vancraeyveld, P., Wellendorff, J., Schneider, J., Gunst, T., Verstichel, B., Stradi, D., Khomyakov, P.A., Vej-Hansen, U.G., et al.: QuantumATK: an integrated platform of electronic and atomic-scale modelling tools. J. Phys. Condens. Matter 32, 15901 (2020)

    Article  Google Scholar 

  49. Becke, A.D.: Perspective: fifty years of density-functional theory in chemical physics. J. Chem. Phys. 140, 18 (2014)

    Article  Google Scholar 

  50. Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  Google Scholar 

  51. Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter. 14, 2745–2779 (2002). https://doi.org/10.1088/0953-8984/14/11/302

    Article  Google Scholar 

  52. Ryzhii, V., Ryzhii, M., Svintsov, D., Leiman, V., Maltsev, P.P., Ponomarev, D.S., Mitin, V., Shur, M.S., Otsuji, T., Ryzhii, V., Ryzhii, M., Svintsov, D., Leiman, V., Maltsev, P.P., Ponomarev, D.S.: Real-space-transfer mechanism of negative differential conductivity in gated graphene-phosphorene hybrid structures: phenomenological heating model. J. Appl. Phys. 124, 114501 (2018). https://doi.org/10.1063/1.5046135

    Article  Google Scholar 

  53. Yu, W.J., Li, Z., Zhou, H., Chen, Y., Wang, Y., Huang, Y., Duan, X.: Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246 (2012)

    Article  Google Scholar 

  54. Moriya, R., Yamaguchi, T., Inoue, Y., Morikawa, S., Sata, Y., Masubuchi, S., Machida, T.: Large current modulation in exfoliated-graphene/MoS2/metal vertical heterostructures. Appl. Phys. Lett. 105, 83119 (2014). https://doi.org/10.1063/1.4894256

    Article  Google Scholar 

  55. Yamaguchi, T., Moriya, R., Inoue, Y., Morikawa, S., Masubuchi, S., Watanabe, K., Taniguchi, T., Machida, T.: Tunneling transport in a few monolayer-thick WS2/graphene heterojunction. Appl. Phys. Lett. 105, 223109 (2014). https://doi.org/10.1063/1.4903190

    Article  Google Scholar 

  56. Cruz-Silva, E., Barnett, Z.M., Sumpter, B.G., Meunier, V.: Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles. Phys. Rev. B 83, 155445 (2011). https://doi.org/10.1103/PhysRevB.83.155445

    Article  Google Scholar 

  57. Ning, F., Chen, S.-Z., Zhang, Y., Liao, G.-H., Tang, P.-Y., Li, Z.-L., Tang, L.-M.: Interfacial charge transfers and interactions drive rectifying and negative differential resistance behaviors in InAs/graphene van der Waals heterostructure. Appl. Surf. Sci. 496, 143629 (2019). https://doi.org/10.1016/j.apsusc.2019.143629

    Article  Google Scholar 

  58. Mishchenko, A., Tu, J.S., Cao, Y., Gorbachev, R.V., Wallbank, J.R., Greenaway, M.T., Morozov, V.E., Morozov, S.V., Zhu, M.J., Wong, S.L., Withers, F., Woods, C.R., Kim, Y.J., Watanabe, K., Taniguchi, T., Vdovin, E.E., Makarovsky, O., Fromhold, T.M., Fal’ko, V.I., Geim, A.K., Eaves, L., Novoselov, K.S.: Twist-controlled resonant tunnelling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808–813 (2014). https://doi.org/10.1038/nnano.2014.187

    Article  Google Scholar 

  59. Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A.: Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947–950 (2012). https://doi.org/10.1126/science.1218461

    Article  Google Scholar 

  60. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  61. Ilatikhameneh, H., Salazar, R.B., Klimeck, G., Rahman, R., Appenzeller, J.: From Fowler-Nordheim to nonequilibrium green’s function modeling of tunneling. IEEE Trans. Electron Devices 63, 2871–2878 (2016). https://doi.org/10.1109/TED.2016.2565582

    Article  Google Scholar 

  62. Lu, H., Esseni, D., Seabaugh, A.: Universal analytic model for tunnel FET circuit simulation. Solid State Electron 108, 110–117 (2015). https://doi.org/10.1016/j.sse.2014.12.002

    Article  Google Scholar 

  63. Manavizadeh, N., Raissi, F., Soleimani, E.A., Pourfath, M., Selberherr, S.: Performance assessment of nanoscale field-effect diodes. IEEE Trans. Electron Devices 58, 2378–2384 (2011). https://doi.org/10.1109/TED.2011.2152844

    Article  Google Scholar 

  64. Fahad, M., Srivastava, A., Sharma, A., Mayberry, C.: Analytical current transport modeling of graphene nanoribbon tunnel field-effect transistors for digital circuit design. IEEE Trans. Nanotechnol. 15, 39–50 (2016). https://doi.org/10.1109/TNANO.2015.2496158

    Article  Google Scholar 

  65. Ryzhii, V., Otsuji, T., Ryzhii, M., Aleshkin, Y., Dubinov, A.A., Mitin, V., Shur, M.S.: Vertical electron transport in van der Waals heterostructures with graphene layers. J. Appl. Phys. 117, 154504 (2015). https://doi.org/10.1063/1.4918313

    Article  Google Scholar 

  66. Yuan, J., Chen, Y., Xie, Y., Zhang, X., Rao, D., Guo, Y., Yan, X., Feng, Y.P., Cai, Y.: Squeezed metallic droplet with tunable Kubo gap and charge injection in transition metal dichalcogenides. Proc. Natl. Acad. Sci. U.S.A. 117, 6362–6369 (2020). https://doi.org/10.1073/pnas.1920036117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Ebrahim Hosseini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoshbaten, M., Hosseini, S.E. New RTDs with enhanced operation based on black phosphorus–graphene heterostructures and a semianalytical vdW tunneling model. J Comput Electron 20, 70–80 (2021). https://doi.org/10.1007/s10825-020-01542-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01542-1

Keywords

Navigation