Skip to main content
Log in

Studies of structural, dielectric and electrical characteristics of complex perovskite: Sr(Ni1/3Mn1/3W1/3)O3

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

A lead-free complex perovskite, strontium nickel tungsten manganite Sr(Ni1/3Mn1/3W1/3)O3(SNMWO), was synthesized following a cost-effective standard ceramic processing technology. The structure of the compound was found to be cubic. A detailed study of scanning electron micrograph and the energy-dispersive spectra of SNMWO provided the quality and composition of the material. The average crystallite size (Dhkl) of SNMWO was found to be about 22 nm, which was calculated using Scherrer relation. The analysis of the data of dielectric, impedance and electrical conduction for a wide range of frequency and temperature of SNMWO provides interesting characteristics for useful applications. The dielectric relaxation and electrical properties are related to the grains, grain boundaries and electrode characteristics of SNMOW. Such characteristics of the material help us to understand the correlation between conduction mechanism and microstructure of the material for electronic applications. The important electrical properties were evaluated from the simulation of the Nyquist plots with the help of an equivalent electrical circuit. The transport properties along with the ac-conductivity, modulus (electrical) of Sr (Ni1/3Mn1/3W1/3)O3, were also presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. I V Veksler and M P Teptelev Lithos 26 177 (1990).

  2. C A Triana, L T Corredor, D A L Téllez, and J Roa-Rojas Mater. Res. Bull. 46 2478 (2011).

    Article  Google Scholar 

  3. P A Cox Transition metal oxides: an introduction to their electronic structure and properties (Clarendon Press) (2010).

  4. A Maignan, S Hébert, L Pi, D Pelloquin, C Martin, C Michel, M Hervieu, and B Raveau Cryst. Eng. 5 365 (2002).

    Google Scholar 

  5. A Mleiki, R Hanen, H Rahmouni, N Guermazi, K Khirouni, E K Hlil, and A Cheikhrouhou RSC Adv. 8 31755 (2018).

  6. B Raveau, Y M Zhao, C Martin, M Hervieu, and A Maignan J. Solid State Chem. 149 203 (2000).

    Article  ADS  Google Scholar 

  7. M B Salamon and M Jaime Rev. Mod. Phys. 73 583 (2001).

    Article  ADS  Google Scholar 

  8. C N R Rao and A K Raychaudhuri Colossal magnetoresistance, charge ordering and related properties of manganese oxides, Chap 1, pp 1–42 (2003).

  9. A Urushibara, Y Moritomo, T Arima, A Asamitsu, G Kido and Y Tokura Phys. Rev. B 51, 14103 (1995).

  10. S B Reddy, K Mohan Kant, K P Rao, M Opel, R Gross, and M S R Rao J. Magn. Magn. Mater. 303 e332 (2006).

    Article  Google Scholar 

  11. R Søndenå, P Ravindran, S Stølen, T Grande, and M Hanfland Phys. Rev. B 74 144102 (2006).

    Google Scholar 

  12. A Aguadero, D Pérez-Coll, J A Alonso, S J Skinner, and J Kilner Chem. Mater. 24 2655 (2012).

    Google Scholar 

  13. T Suzuki, H Sakai, Y Taguchi, and Y Tokura J. Electron. Mater. 41 1559 (2012).

    Article  ADS  Google Scholar 

  14. G George, S L Jackson, C Q Luo, D Fang, D Luo, D Hu, J Wen, and Z Luo Ceram. Int. 44 21982 (2018).

    Google Scholar 

  15. S K Dehury, D Khatua, P G R Achary, and R N P Choudhary Indian J. Phys. 93 837 (2019).

    Article  ADS  Google Scholar 

  16. J Kim, A Paul, P A Crowell, S J Koester, S SSapatnekar, J P Wang, and C H Kim Proc. IEEE 103 106 (2015).

  17. K Parida, S K Dehury, and R N P Choudhary J. Mater. Sci. Mater. Electron. 27 11211 (2016).

    Article  Google Scholar 

  18. S K Dehury, K Parida, and R N P Choudhary J. Mater. Sci. Mater. Electron. 28 10441 (2017).

    Article  Google Scholar 

  19. K Parida, S K Dehury, and R N P Choudhary Mater. Sci. Eng. B 225 173 (2017).

    Article  Google Scholar 

  20. S K Dehury, P G R Achary, and R N P Choudhary J. Mater. Sci. Mater. Electron. 1 (2017).

  21. P G R Achary, S K Dehury, and R N P Choudhary J. Mater. Sci. Mater. Electron. 1 (2018).

  22. T Chakraborty, H S Nair, H Nhalil, K Ramesh Kumar, A M Strydom, and S Elizabeth J. Phys. Condens. Matter 29 025804 (2017).

  23. T Ramkumar, M Selvakumar, R Vasanthsankar, A S Sathishkumar, and P Narayanasamy J. Magnes. Alloy. 6 390 (2018).

    Article  Google Scholar 

  24. L Alexander and H P Klug J. Appl. Phys. 21 (1950).

  25. A J Dos santos-García, E Solana-Madruga, C Ritter, A Andrada-Chacón, J Sánchez-Benítez, F J Mompean, M Garcia-Hernandez, R Sáez-Puche, and R Schmidt Angew. Chemie Int. Ed. 56 4438 (2017).

  26. D Kumari, R Rai, and A KholkinInfluence of BiFeTaO3 addition on the electrical properties of Na 0.4725K0.4725Li0.055NbO3 ceramics system using impedance spectroscopy (2015).

  27. A Kumar, B P Singh, R N P Choudhary, and A K Thakur J. Alloys Compd. 394 292 (2005).

    Article  Google Scholar 

  28. D C L Vasconcelos, V C Costa, E H M Nunes, A C S Sabioni, M Gasparon, and W L Vasconcelos Mater. Sci. Appl. 02 1375 (2011).

    Google Scholar 

  29. M Ram J. Alloys Compd. 509 1744 (2011).

  30. S K Dehury, P G R Achary, and R N P Choudhary J. Mater. Sci. Mater. Electron. 29 3682 (2018).

    Article  Google Scholar 

  31. A K JonscherNature267 673 (1977).

  32. A K Jonscher J. Phys. D. Appl. Phys. 32 R57 (1999).

    Article  ADS  Google Scholar 

  33. J Ross Macdonald Solid State Ionics 13 147 (1984).

  34. R Ranjan, R Kumar, N Kumar, B Behera, and R N P Choudhary J. Alloys Compd. 509 6388 (2011).

    Article  Google Scholar 

  35. M Pollak and T H Geballe Phys. Rev. 122 1742 (1961).

    Google Scholar 

  36. S Sen, R N P Choudhary, and P Pramanik Phys. B Condens. Matter 387 56 (2007).

  37. N Kumar, A Shukla, N Kumar, and R N P Choudhary Ceram. Int. 45 822 (2019).

    Google Scholar 

Download references

Acknowledgments

The present work is funded by the UGC-DAE-CSR, Mumbai (CRS-M-297). The authors would like to thank Dr. P. D. Babu of UGC-DAE-CSR, Mumbai, and Dr. Raja KishoraLenkaof Powder Metallurgy Division, BARC, Mumbai, for providing facilities to conduct.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ganga Raju Achary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1490 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatua, D., Dehury, S.K., Parida, S.K. et al. Studies of structural, dielectric and electrical characteristics of complex perovskite: Sr(Ni1/3Mn1/3W1/3)O3. Indian J Phys 95, 1147–1155 (2021). https://doi.org/10.1007/s12648-020-01789-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01789-1

Keywords

PACS Nos.

Navigation