Skip to main content
Log in

Solitary dispersive Alfven wave in a plasma with hot electrons, cold positrons and ions

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The dispersion relation and the nonlinear behaviour of dispersive Alfven waves (DAWs) in a plasma, which is composed by hot electrons, cold positrons and ions, are studied from the multi-component fluid theory. It can be indicated from the linear dispersion relation that the coupling of positron acoustic waves with shear Alfven waves results from the effect of the finite ion gyroradius. In our mode, the pressure and the inertia of the positron acoustic wave are, respectively, provided by the hot electrons and the cold positrons, which are different from the ones in a plasma consisting of two-group positrons with different temperatures. Furthermore, the existence and properties of DAW solitons are analysed from the Sagdeev pseudopotential equation, which indicates the existence of super-Alfvenic or sub-Alfvenic solitary DAWs, as well as the amplitude and width of DAW solitons depend on the positron concentration and the electron temperature. When the effects of cold positrons can’t be neglected, there may coexist the compressive and rarefactive DAW solitons. When the concentration of positron is negligibly small, the properties of DAW solitons in our model are similar to the ones of kinetic Alfven wave solitons in a plasma composed by hot electrons and cold ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y I Salamin, S X Hu, K Z Hatsagortsyan and C H Keitel Phys. Rep. 427 41 (2006)

    ADS  Google Scholar 

  2. H Chen, S C Wilk, J D Bonlie, E P Liang, J Myatt, D F Price, D D Meyerhofer and P Beiersdorfer Phys. Rev. Lett. 102 105001 (2009)

    ADS  Google Scholar 

  3. D D Sorbo, D R Blackman, R Capdessus, K Small, C Slade-Lowther, W Luo, M J Duff, A P L Robinson, P McKenna, Z M Sheng, J Pasley and C P Ridgers New J. Phys. 20 033014 (2018)

    Google Scholar 

  4. C Michel Rev. Mod. Phys. 54 1 (1982).

    ADS  Google Scholar 

  5. F C Michel Theory of Neutron Star Magnetosphere (Chicago: Chicago University Press) (1991)

    Google Scholar 

  6. E Tandberg-Hansen and A G Emslie The Physics of Solar Flares (Cambridge: Cambridge University Press) (1988)

    Google Scholar 

  7. H R Miller and P J Witta Active Galetic Nuclei (Berlin: Springer) (1987)

    Google Scholar 

  8. M J Rees, in The Very Early Universe, edited by G W Gibbons, S W Hawking and S Siklas (Cambridge: Cambridge University Press) (1983)

  9. C M Surko and T Murphy Phys. Fluids B 2 1372 (1990)

    ADS  Google Scholar 

  10. S K Jain and M K Mishra Astrophys. Space Sci. 346 395 (2013)

    ADS  Google Scholar 

  11. N L Shatashvili, J I Javakhishvili and H Kaya Astrophys. Space Sci. 250 109 (1997)

    ADS  Google Scholar 

  12. A Hasegawa and L Chen Phys. Rev. Lett. 370 35 (1975)

    Google Scholar 

  13. P Louarn, J E Wahlund, T Chust, H de Feraudy, A Roux, B Holback, P O Dovner, A I Eriksson and G Holmgren Geophys. Res. Lett. 1847 21 (1994)

    Google Scholar 

  14. L Andersson, J E Wahlund, J Clemmons and B Gustavsson Ann. Geophys. 139 20 2002

    Google Scholar 

  15. J R Wygant, A Keiling, C A Cattell, R L Lysak, M Temerin, F. S. Mozer, C A Kletzing, J D Scudder, V Streltsov, W Lotko and C T Russell J. Geophy. Res. SMP 24-1 107 (2002).

    Google Scholar 

  16. C C Chaston, C W Carlson, W J Peria, R E Ergun and J P McFadden Geophys. Res. Lett. 26 647 (1999)

    ADS  Google Scholar 

  17. S P Duan, L Dai, C Wang, J Liang, A T Y Lui, L J Chen, Z H He, Y C Zhang and V Angelopoulos J. Geophys. Res. 121 4316 (2016)

    Google Scholar 

  18. R L Lysak and Y Song J. Geophys. Res. 108 8005 (2003)

    Google Scholar 

  19. D Y Klimushkin and P N Mager Astrophys. Space Sci. 350 579 (2014)

    ADS  Google Scholar 

  20. Y M Voitenko Solar Phys. 182 411 (1998)

    ADS  Google Scholar 

  21. J Liang, Y Lin, J R Johnson, Z X Wang and X Y Wang Phys. Plasmas. 24 102110 (2017)

    ADS  Google Scholar 

  22. L Dai, C Wang, Y C Zhang, B Lavraud, J Burch, C Pollock and R B Torbert Geophys. Res. Lett. 44 634 (2017)

    ADS  Google Scholar 

  23. P Agarwal, P Varman and M S Tiwari Planet. Space Sci. 59 306 (2011)

    ADS  Google Scholar 

  24. E Dubinin, K Sauer, J. F. McKenzie J. Geophys. Res. 110 1004 (2005)

    Google Scholar 

  25. M Singh, N S Saini and I Kourakis Mon. Not. R. Astron. Soc. 486 5504 (2019).

    ADS  Google Scholar 

  26. N S Saini, M Singh and A S Bains Phys. Plasmas. 22 113702 (2015)

    ADS  Google Scholar 

  27. M Singh, N Kaur and N S Saini Phys. Plasmas. 25, 023705 (2018).

    ADS  Google Scholar 

  28. H Kakati and K S Goswami Phys. Plasmas. 5 4229 (1998)

    ADS  Google Scholar 

  29. H Kakati and K S Goswami Phys. Plasmas. 7 808 (2000)

    ADS  Google Scholar 

  30. M A Mahmood, S Mahmood, A M Mirza and H Saleem Chin. Phys. Lett. 22 632 (2005)

    ADS  Google Scholar 

  31. H Saleem and S Mahmood Phys. Plasmas. 10 2612 (2003)

    ADS  Google Scholar 

  32. O P Sah Phys. Plasmas. 17 032306 (2010)

    ADS  Google Scholar 

  33. M Adnan, S Mahmood, A Qamar and M Tribech Adv. Space Res. 58 1746 (2016)

    ADS  Google Scholar 

  34. M K Ahmed and O P Sah Journal of King Saud University-Science. 30 375 (2018)

    Google Scholar 

  35. S Mahmood and H Saleem Phys. Plasmas. 10 4680 (2003)

    ADS  Google Scholar 

  36. B Ghosh, H Sahoo and K K Mondal Int. J. Math. Comput. Phys. Electr. Comput. Eng. 9 391 (2015)

    Google Scholar 

  37. A Hasegawa and K Mima Phys. Rev. Lett. 37 690 (1976)

    ADS  Google Scholar 

  38. M Y Yu and P K Shukla Phys. Fluids. 21 1457 (1978)

    ADS  Google Scholar 

  39. P K Shukla, H U Rahman and R P Sharma J. Plasma Phys. 28 125 (2009)

    ADS  Google Scholar 

  40. H A Shah, M N S Qureshi and N sintsadze Phys. Plasmas 17 032312 (2010)

    ADS  Google Scholar 

  41. H A Shah, W Masood, M N S Qureshi and N L Tsintsadze Phys. Plasmas 18 102306 (2011)

    ADS  Google Scholar 

  42. Nejoh YN (1996) Beam. Aust. J. Phys. 49 967

    ADS  Google Scholar 

  43. M Tribeche, K Aoutou, S Younsi and R. Amour Phys. Plasmas. 16 072103 (2009)

    ADS  Google Scholar 

  44. Y Liu, S Q Liu and B Dai Phys. Plasmas. 18 092309 (2011)

    ADS  Google Scholar 

  45. R Bharuthram Astrophys. Space Sci. 189 213 (1992)

    ADS  Google Scholar 

  46. C Hugenschmidt Nucl. Phys. News 28 28 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the International S&T Cooperation Program of China (No. 2015DFA61800), National Key Research and Development Program of China (2016YFD0600703-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Liu, Y. Solitary dispersive Alfven wave in a plasma with hot electrons, cold positrons and ions. Indian J Phys 95, 1533–1543 (2021). https://doi.org/10.1007/s12648-020-01798-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01798-0

Keywords

Navigation