Skip to main content
Log in

Titanium white modification with silica nanoparticles and formation of structured clusters on vibrating screen

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The behaviour of titanium white (TiO2) particles with particle size smaller than 45 μm during the modification with nanoparticles (5–50 nm) of hydrophobic silica powder on the vibrating screen and following examination of the newly formed particle clusters is described. Using the vibrating screen aerated in certain places using loudspeaker the subsequent fluidization of the titania particles via simultaneous modification with silica was achieved. The particles of titania are being less cohesively bounded, the van der Walls are weaker and flowability of the system is radically improved. By the targeted fluidization of regions on the screen, was possible to experiment with resulting shapes of particle clusters from the nanoparticles of silica and titanium white in this research. Resulting structure can appear at approximately 2 s of 222.32 Hz excitation using loudspeaker acoustic waves. Methyl groups of hydrophobic nanoparticles of silica can be source for advanced surface applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Matsusaka, S., Sato, S., Yasuda, M.: Convection induced by vibrating rod in fine-powder bed. Adv. Powder Technol. 28(10), 2589–2596 (2017)

    Article  Google Scholar 

  2. Avcı, A., Eskizeybek, V., Gülce, H.: ZnO–TiO2 nanocomposites formed under submerged DC arc discharge: preparation, characterization and photocatalytic properties. Appl. Phys. A 116, 1119 (2014)

    Article  ADS  Google Scholar 

  3. Xu, C., Sandali, Y., Sun, G., Zheng, N., Shi, Q.: Segregation patterns in binary granular mixtures with same layer-thickness under vertical vibration. Powder Technol. 322, 92–95 (2017)

    Article  Google Scholar 

  4. Wu, Y., An, X., Yu, A.B.: DEM simulation of cubical particle packing under mechanical vibration. Powder Technol. 314, 89–101 (2017)

    Article  Google Scholar 

  5. Nur, H.: Modification of titanium surface species of titania by attachment of silica nanoparticles. Mat. Sci. Eng. B 133(1–3), 49–54 (2006)

    Article  Google Scholar 

  6. Dahoudi, N.A., Xia, J., Cao, G.: Silica modification of titania nanoparticles for a dye-sensitized solar cell. Electrochim. Acta 59, 32–38 (2012)

    Article  Google Scholar 

  7. Zeleňák, V., Hornebecq, V., Mornet, S., Schäf, O., Llewellyn, P.: Mesoporous silica modified with titania structure and thermal. Chem. Mater. 18(14), 3184–3191 (2006)

    Article  Google Scholar 

  8. Godlisten, N.S., Rizwan, S., Askwar, H.J., Eun, L.Y., Ho, P.H., Taik, K.: Biodiesel production by sulfated mesoporous titania–silica catalysts synthesized by the sol–gel process from less expensive precursors. Chem. Eng. J. 215–216, 600–607 (2013)

    Google Scholar 

  9. Zhe-Ying, S.L., Yu, L.Y., Lib, Ch., Chun, W.: Fabrication of hydroxyl group modified monodispersed hybrid silica particles and the h-SiO2/TiO2 core/shell microspheres as high performance photocatalyst for dye degradation. J. Colloid Interf. Sci. 354(1), 196–201 (2011)

    Article  ADS  Google Scholar 

  10. Burtally, N., King, P.J., Michael, R., Swift, M.R.: Spontaneous air-driven separation in vertically vibrated fine granular mixtures. Science 295(5561), 1877–1879 (2002)

    Article  ADS  Google Scholar 

  11. Knight, J.B., Jaeger, H.M., Sidney, R., Nagel, S.R.: Vibration-induced size separation in granular media: the convection connection. Phys. Rev. Lett. 70, 3728 (1993)

    Article  ADS  Google Scholar 

  12. Medved, M., Jaeger, H.M., Nagel, S.R.: Modes of response in horizontally vibrated granular matter. EPL (Europhys. Lett.) 52(1), 66 (2000)

    Article  ADS  Google Scholar 

  13. Rosato, A.D., Blackmore, D.L., Zhang, N., Lan, Y.: A perspective on vibration-induced size segregation of granular materials. Chem. Eng. Sci. 57, 265–275 (2002)

    Article  Google Scholar 

  14. Clement, E., Vanel, L., Rajchenbach, J., Duran, J.: Pattern formation in a vibrated granular later. Phys. Rev. E 53(3), 2972–2975 (1996)

    Article  ADS  Google Scholar 

  15. Knight, J.B., Frandrich, C.G., Lau, C.N., Jaeger, H.M., Nagel, S.R.: Density relaxation in a vibrated granular materials. Phys. Rev. E 51, 3957–3963 (1995)

    Article  ADS  Google Scholar 

  16. Lim, M.X., Souslov, A., Vitelli, V.: Cluster formation by acoustic forces and active fluctuations in levitated granular matter. Nat. Phys. 15, 460–464 (2019)

    Article  Google Scholar 

  17. Thomas, B., Mason, M.O., Squires, A.M.: Some behaviors of shallow vibrated beds across a wide range in particle size and their implications for powder classification. Powder Technol. 111, 34–49 (2000)

    Article  Google Scholar 

  18. Sliva, A., Brazda, R., Zegzulka, J., Dvorsky, R., Lunacek, J.: Particle characterization of nanoparticle materials in water jet mill device. J. Sci. Confer. Proceed. 2(1), 45–48 (2010)

    Article  Google Scholar 

  19. Sliva, A., Samolejova, A., Brazda, R., Zegzulka, J., Polak, J.: Optical parameter adjustment for silica nano-and micro-particle size distribution measurement using Mastersizer 2000. In: Proc. SPIE 5445, Microwave and Optical Technology 2003, pp. 160–163 (2003)

  20. Product List, www.evonik.com, https://www.aerosil.com/product/aerosil/en/ Accessed 22 January, 2020

  21. Ku, N., Hare, C., Ghadiri, M., Murtagh, M., Oram, P., Haber, R.A.: Auto-granulation of fine cohesive powder by mechanical vibration. Procedia Eng. 102, 72–80 (2015)

    Article  Google Scholar 

  22. Zhou, L., Wang, H., Zhou, T., Li, K., Kage, H., Mawatari, Y.: Model of estimating nano-particle agglomerate sizes in a vibro-fluidized bed. Adv. Powder Technol. 24, 311–316 (2013)

    Article  Google Scholar 

  23. Raganati, F., Chirone, R., Ammendola, P.: Gas–solid fluidization of cohesive powders. Chem. Eng. Res. Des. 133, 346–387 (2018)

    Article  Google Scholar 

  24. Vivacqua, V., Ghadari, M.: Modelling of auto-agglomeration of cohesive powders. Chem. Eng. Res. Des. 133, 137–141 (2018)

    Article  Google Scholar 

  25. Ali, S.S., Al-Ghurabi, E.H., Imbrahim, A.A., Asif, M.: Effect of adding Geldart group A particles on the collapse of fluidized bed of hydrophilic nanoparticles. Powder Technol. 330, 50–57 (2018)

    Article  Google Scholar 

  26. Králová, M., Dzik, P., Kašpárek, V., Veselý, M., Cihlář, J.: Cold-setting inkjet printed titania patterns reinforced by organosilicate binder. Molecules 20(9), 16582–16603 (2015)

    Article  Google Scholar 

  27. Barletta, D., Poletto, M.: Aggregation phenomena in fluidization of cohesive powders assisted by mechanical vibrations. Powder Technol. 225, 93–100 (2012)

    Article  Google Scholar 

  28. Chen, Y., Yang, J., Dave, R.N., Pfeffer, R.: Granulation of cohesive Geldart group C powders in a Mini-Glatt fluidized bed by pre-coating with nanoparticles. Powder Technol. 191(1–2), 206–217 (2009)

    Google Scholar 

  29. Cuko, A., Calatayud, M., Bromley, S.T.: Stability of mixed-oxide titanosilicates: dependency on size and composition from nanocluster to bulk. Nanoscale 10, 832–842 (2018)

    Article  Google Scholar 

  30. Dzik, P., Veselý, M., Pachovská, M., Neumann-Spallart, M., Buršíková, V., Homola, T.: The influence of curing methods on the physico-chemical properties of printed mesoporous titania patterns reinforced by methylsilica binder. Catal. Today 313, 26–32 (2018)

    Article  Google Scholar 

  31. Dvorsky, R., Lunacek, J., Sliva, A., Sancer, J.: Preparation of silicon nanoparticular nanocomposite with thin interparticular tin matrix. J. Nanosci. Nanotechnol. 11(10), 9065–9071 (2011)

    Article  Google Scholar 

  32. Bakar, N.F.A., Anzai, R.H.: Microscopic evaluation of binderless granulation in a pressure swing granulation fluidized bed. Chem. Eng. Sci. 98(19), 51–58 (2013)

    Article  Google Scholar 

  33. Cherntongchai, P., Chaiwattana, S., Leruk, R.: Bed expansion characteristics in sound assisted fluidization of Geldart’s group A powder. Powder Technol. 340, 243–252 (2018)

    Article  Google Scholar 

  34. Sliva, A., Brazda, R., Prochazka, A., Martynkova, G.S., Barabaszova, K.C.: Investigation of geometric properties of modified titanium white by fluidisation for use in the process of transport, handling, processing and storage. J. Nanosci. Nanotechnol. 19(5), 2997–3001 (2019)

    Article  Google Scholar 

  35. Jarray, A., Shi, H., Scheper, B.J., Habibi, M., Luding, S.: Cohesion-driven mixing and segregation of dry granular media. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  36. Cabiscol, R., Finke, J.H., Kwade, A.: Assessment of particle rearrangement and anisotropy in high-load tableting with a DEM-based elasto-plastic cohesive model. Granul. Matter 21, 98 (2019)

    Article  Google Scholar 

  37. Horio, M.: Binderless granulation—its potential, achievements and future issues. Powder Technol. 130, 1–7 (2003)

    Article  Google Scholar 

  38. Yang, J., Sliva, A., Banerjee, A., Dave, R.N., Pfeffer, R.: Dry particle coating for improving the flowability of cohesive powders. Powder Technol. 158(1–3), 21–33 (2005)

    Article  Google Scholar 

  39. Sliva, A., Brazda, R., Prochazka, A., Martynkova, G.S., Barabaszova, K.C.: Study of the optimum arrangement of spherical particles in containers having different cross section shapes. J. Nanosci. Nanotechnol. 19(5), 2717–2722 (2019)

    Article  Google Scholar 

  40. Prochazka, A.: Fluidization Research in Transport and Storage systems. Dissertation Thesis, Ostrava (2015) (in Czech)

Download references

Acknowledgements

The paper has been done in connection with the Innovative and additive manufacturing technology–new technological solutions for 3D printing of metals and composite materials project, reg. no. CZ.02.1.01/0.0/0.0/17 049/0008407 financed by the Structural Founds of Europe Union and the SGS SP2019/101 Student Grant Competition–Transport Science and Research–Transport Simulation, Adhesive Models and Storage Processes project. This work was supported by the European Regional Development Fund in the IT4Innovations national supercomputing center - path to exascale project, project number CZ.02.1.01/0.0/0.0/16_013/0001791 within the Operational Programme Research, Development and Education., Ministry of Education, Youth and Sport of the Czech Republic SP2019/50, SP2020/72 and SP2019/24, SP 2020/08 partially supported the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleš Slíva.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slíva, A., Brázda, R., Procházka, A. et al. Titanium white modification with silica nanoparticles and formation of structured clusters on vibrating screen. Granular Matter 22, 64 (2020). https://doi.org/10.1007/s10035-020-01032-y

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01032-y

Keywords

Navigation