Skip to main content
Log in

Comparison of five extraction methods for evaluating cadmium and zinc immobilization in soil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The remediation of soil contaminated with heavy metals is an ongoing environmental concern. Paddy soils contaminated with Cd and Zn were collected from around abandoned metals mines in Korea. Limestone and steel slag were mixed with the collected soil, as amendments for Cd and Zn immobilization. Sequential extraction, lettuce cultivation and five single extraction methods were carried out to assess the effects on Cd and Zn immobilization using amendments. The exchangeable fraction of Cd and Zn was decreased and Fe–Mn oxides fraction increased by stabilization using amendments. In addition, the accumulation of Cd and Zn in lettuce decreased in treated soil and indicated the Cd and Zn immobilization effect in soil by the amendments. The extractable Cd and Zn by CaCl2 and Mehlich-3 in the untreated soils were higher than that of treated soils, whereas Cd and Zn extraction by ethylenediaminetetraacetic acid (EDTA), diethylene tetramine penta-acetic acid (DTPA) and toxicity characteristic leaching procedure (TCLP) has a small or no difference between the untreated and treated soils. The extraction results by CaCl2 and Mehlich-3 methods present reasonable results for Cd and Zn immobilization in soil than EDTA, DTPA and TCLP methods. Therefore, the choice of appropriate extraction method is very important when there is the assessment of Cd and Zn immobilization efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Association Française de Normalisation (AFNOR). (1994). Qualité des sols. Méthodes d'analyses–recueil de norms françaises. Afnor, Paris, France.

  • Boyle, J. (2004). A comparison of two methods for estimating the organic matter content of sediments. Journal of Paleolimnology, 31(1), 125–127.

    Article  Google Scholar 

  • Cao, X., Dermatas, D., Xu, X., & Shen, G. (2008). Immobilization of lead in shooting range soils by means of cement, quicklime, and phosphate amendments. Environmental Science Pollution Research, 15(2), 120–127.

    Article  CAS  Google Scholar 

  • Cao, X., Wahbi, A., Ma, L., Li, B., & Yang, Y. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardous Materials, 164(2–3), 555–564.

    Article  CAS  Google Scholar 

  • Chen, W., Li, L., Chang, A. C., Wu, L., Kwon, S. I., & Bottoms, R. (2009). Cadmium uptake by lettuce in fields treated with cadmium-spiked phosphorus fertilizers. Communications in Soil Science and Plant Analysis, 40, 1124–1137.

    Article  CAS  Google Scholar 

  • Chu, C. Y., & Ko, T. H. (2018). Evaluation of acid leaching on the removal of heavy metals and soil fertility in contaminated soil. Journal of Chemistry. https://doi.org/10.1155/2018/5036581.

    Article  Google Scholar 

  • Deutsches Institut für Normung (DIN). (1995). Bodenbeschaffenheit. Extraktion von spurenelemente mit ammonium-nitratlösung. Vornorm DINV 19730. DIN (ed) Boden-Chemische Bodenuntersuchungs-verfahren, Berlin, Germany.

  • Eshel, G., Levy, G. J., Mingelgrin, U., & Singer, M. J. (2004). Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Science Society of America Journal, 68, 736–744.

    Article  CAS  Google Scholar 

  • Fan, J., He, Z., Ma, L. Q., et al. (2011). Immobilization of copper in contaminated sandy soils using calcium water treatment residue. Journal of Hazardous Materials, 189, 710–718.

    Article  CAS  Google Scholar 

  • Fu, W., Huang, K., Cai, H. H., et al. (2017). Exploring the potential of naturalized plants for phytoremediation of heavy metal contamination. International Journal of Environmental Research, 11(4), 515–521.

    Article  CAS  Google Scholar 

  • Gupta, A. K., & Sinha, S. (2007). Assessment of single extraction methods for the prediction of bioavailability of metals to Brassica juncea L. Czern. (var. Vaibhav) grown on tannery waste contaminated soil. Journal of Hazardous Materials, 149(1), 144–150.

    Article  CAS  Google Scholar 

  • He, M., Shi, H., Zhao, X., Yu, Y., & Qu, B. (2013). Immobilization of Pb and Cd in contaminated soil using nano-crystallite hydroxyapatite. Procedia Environmental Sciences, 18, 657–665.

    Article  CAS  Google Scholar 

  • Hosseiwwnpur, A. R., & Motaghian, H. (2015). Evaluation of many chemical extractants for assessment of Zn and Pb uptake by bean in polluted soils. Journal of Soil Science and Plant Nutrition, 15(1), 24–34.

    Google Scholar 

  • Houben, D., Pircar, J., & Sonnet, P. (2012). Heavy metal immobilization by cost-effective amendments in a contaminated soil: effects on metal leaching and phytoavailability. Journal of Geochemical Exploration, 123, 87–94.

    Article  CAS  Google Scholar 

  • Huang, Q., Yu, Z., Pang, Y., Wang, Y., & Cai, Z. (2015). Coupling bioleaching and electrokinetics to remediate heavy metal contaminated soils. Bulletin of Environmental Contamination and Toxicology, 94(4), 519–524.

    Article  CAS  Google Scholar 

  • Islam, M. N., Jung, H. Y., & Park, J. H. (2015). Subcritical water treatment of explosive and heavy metals co-contaminated soil: removal of the explosive, and immobilization and risk assessment of heavy metals. Journal of Environmental Management, 163, 262–269.

    Article  CAS  Google Scholar 

  • Koo, B. J., Chen, W., Chang, A. C., Page, A. L., Granato, T. C., & Dowdy, R. H. (2010). A root exudates based approach to assess the long-term phytoavailability of metals in biosolids-amended soils. Environmental Pollution, 158(8), 2582–2588.

    Article  CAS  Google Scholar 

  • Lakanen, E., & Erviö, R. (1971). A comparison of eight extractants for determination of plant available micronutrients in soil. Acta Agronomica Fennica, 123, 223–232.

    Google Scholar 

  • Lee, C. S., & Kao, M. M. (2004). Effects of extracting reagents and metal speciation on the removal of heavy metal contaminated soils by chemical extraction. Journal of Environmental Science and Health, 39(5), 1233–1249.

    Article  Google Scholar 

  • Lee, H. K., Moon, H. S., & Oh, M. S. (2007). Economic mineral deposits in Korea. Seoul: ACANET.

    Google Scholar 

  • Lee, S. H., Park, H., Koo, N., Hyun, S., & Hwang, A. (2011). Evaluation of the effectiveness of various amendments on trace metals stabilization by chemical and biological methods. Journal of Hazardous Materials, 188(1–3), 44–51.

    Article  CAS  Google Scholar 

  • Lee, S. J., Lee, M. E., Chung, J. W., Park, J. H., Huh, K. Y., & Jun, G. I. (2013). Immobilization of lead from Pb-contaminated soil amended with peat moss. Journal of Chemistry. https://doi.org/10.1155/2013/509520.

    Article  Google Scholar 

  • Lindsay, W. L., & Norvell, W. A. (1978). Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Science Society America Journal, 42(3), 421–428.

    Article  CAS  Google Scholar 

  • Meers, E., Samson, R., Tack, F. M. G., et al. (2007). Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environmental and Experimental Botany, 60(3), 385–396.

    Article  CAS  Google Scholar 

  • Mehlich, A. (1984). Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis, 15(12), 1409–1416.

    Article  CAS  Google Scholar 

  • Menzies, N. W., Donn, M. J., & Kopittke, P. M. (2007). Evaluation of extractants for estimation of the phytoavailable trace metals in soils. Environmental Pollution, 145(1), 121–130.

    Article  CAS  Google Scholar 

  • Norvell, W. A., & Lindsay, W. L. (1972). Reactions of DTPA chelates of iron, zinc, copper, and manganese with soils. Soil Science Society of America Journal, 36(5), 778–783.

    Article  Google Scholar 

  • Novozamsky, I., Lexmond, T. M., & Houba, V. J. G. (1993). A single extraction procedure of soil for evaluation of uptake of some metals by plants. International Journal of Analytical Chemistry, 51(1–4), 47–58.

    Article  CAS  Google Scholar 

  • Ok, Y. S., Lee, H., Jung, J., Song, H., Chung, N., Lim, S., et al. (2004). Chemical characterization and bioavailability of cadmium in artificially and naturally contaminated soils. Agricultural Chemistry and Biotechnology, 47(3), 143–146.

    CAS  Google Scholar 

  • Ok, Y. S., Lim, J. E., & Moon, D. H. (2011). Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environmental Geochemistry and Health, 33(1), 83–91.

    Article  CAS  Google Scholar 

  • Park, H., Jung, K., Alorro, R. D., & Yoo, K. (2013). Leaching behavior of copper, zinc and lead from contaminated soil with citric acid. Materials Transactions, 54(7), 1220–1223.

    Article  CAS  Google Scholar 

  • Pueyo, M., Lopez-Sanchez, J. F., & Rauret, G. (2004). Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils. Analytica Chimica Acta, 504(2), 217–226.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Rinklebe, J., & Selim, M. H. (2015). Impact of various amendments on immobilization and phytoavailability of nickel and zinc in a contaminated flooding soil. International Journal of Environmental Science and Technology, 12, 2765–2776.

    Article  CAS  Google Scholar 

  • Sun, Y., Li, Y., Xu, Y., Liang, X., & Wang, L. (2015). In situ stabilization remediation of cadmium (Cd) and lead (Pb) co-contaminated paddy soil using bentonite. Applied Clay Science, 105–106, 200–206.

    Article  Google Scholar 

  • Tica, D., Udovic, M., & Lestan, D. (2011). Immobilization of potentially toxic metals using different soil amendments. Chemosphere, 85, 577–583.

    Article  CAS  Google Scholar 

  • USEPA, (1986). Method 9080: Cation-exchange capacity of soils (sodium acetate). Washington DC: US Environmental Protection Agency.

    Google Scholar 

  • USEPA, (1992). Method 1311: Toxicity Characteristic Leaching Procedure (TCLP). Washington DC: US Environmental Protection Agency.

    Google Scholar 

  • van Ranst, E., Verloo, M., Demeyer, A., & Pauwels, J. M. (1999). Manual for the soil chemistry and fertility laboratory-analytical methods for soils and plants, equipment, and management of consumables. NUGI 835, Ghent, Belgium (ISBN 90–76603–01–4), 243 pp.

  • Wang, G., Zhang, S., Zhong, Q., Peijnenburg, W. J. G. M., & Vijver, M. G. (2018). Feasibility of Chinese cabbage (Brassica bara) and lettuce (Lactuca sativa) cultivation in heavily metals-contaminated soil after washing with biodegradable chelators. Journal of Cleaner Production, 197, 479–490.

    Article  CAS  Google Scholar 

  • Yu, K., Xu, J., Jiang, X., Liu, C., McCall, W., & Lu, J. (2017). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, 884–891.

    Article  CAS  Google Scholar 

  • Zhang, M. K., Liu, Z. Y., & Wang, H. (2010). Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Communications in Soil Science and Plant Analysis, 41(7), 820–831.

    Article  CAS  Google Scholar 

  • Zhou, H., Zhou, X., Zeng, M., et al. (2014). Effects of combined amendments on heavy metals accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicolgy and Environmental Safety, 101, 226–232.

    Article  CAS  Google Scholar 

  • Zhu, Q. H., Huang, D. Y., Liu, S. L., et al. (2012). Assessment of single extraction methods for evaluating the immobilization effect of amendments on cadmium in contaminated acidic paddy soil. Plant Soil and Environment, 58(2), 98–103.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1A6A3A04008168) and GIST Research Institute (GRI) grant funded by the GIST in 2019.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Myoung-Soo Ko or Kyoung-Woong Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, HJ., Lee, JU., Ko, MS. et al. Comparison of five extraction methods for evaluating cadmium and zinc immobilization in soil. Environ Geochem Health 42, 4203–4212 (2020). https://doi.org/10.1007/s10653-020-00650-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00650-y

Keywords

Navigation