Skip to main content
Log in

Improving Electrical Stability of a-InGaZnO Thin-Film Transistors with Thermally Deposited Self-Assembled Monolayers

  • Original Article - Electronics, Magnetics and Photonics
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Amorphous InGaZnO (a-IGZO) TFTs become mainstream at the forefront of display backplanes and are actively expanding their area for next-generation optoelectronic devices such as flexible and transparent displays. For flexible displays, low temperature processed passivation technology is required to keep the reliability of the electrical properties in a-IGZO TFTs without damaging flexible plastic substrates. Here, we proposed a low-temperature passivation process using a dual-chamber system. A high-quality passivation layer composed of octadecyl-trichlorosilane was formed at 140 °C under vacuum on the back-channel of a-IGZO TFTs using the system. The thermally deposited self-assembled monolayers (SAMs) enable the formation of hydrophobic surfaces on a-IGZO TFTs, leading to the protection of the back-channel against water and oxygen efficiently. As a result, the electrical characteristics such as the threshold voltage shift, hysteresis, field-effect mobility, and negative bias stress of the SAM treated TFTs were significantly improved compared to those of the control TFTs.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin, W.K., Liu, K.C., Chang, S.T., Li, C.S.: Room temperature fabricated transparent amorphous indium zinc oxide based thin film transistor using high-κ HfO2 as gate insulator. Thin Solid Films 520, 3079–3083 (2012)

    Article  CAS  Google Scholar 

  2. Lee, E., et al.: Improved electrical performance of a sol–gel IGZO transistor with high-k Al2O3 gate dielectric achieved by post annealing. Nano Converg. 6, 24 (2019)

    Article  Google Scholar 

  3. Tan, C.M., Chen, X.: Degradation mechanisms in gate-all-around silicon Nanowire field effect transistor under electrostatic discharge stress—a modeling approach. Nano Converg. 1, 11 (2014)

    Article  Google Scholar 

  4. Park, S.-H.K., et al.: 4.3: invited paper: high mobility oxide TFT for large area high resolution AMOLED. SID Symp. Dig. Tech. Pap. 44, 18–21 (2013)

    Article  CAS  Google Scholar 

  5. Yu, X., Marks, T.J., Facchetti, A.: Metal oxides for optoelectronic applications. Nat. Mater. (2016). https://doi.org/10.1038/nmat4599

    Article  Google Scholar 

  6. Huang, H.Y., et al.: Improvement of electrical performance of InGaZnO/HfSiO TFTs with 248-nm excimer laser annealing. Electron. Mater. Lett. 10, 899–902 (2014)

    Article  CAS  Google Scholar 

  7. Xiao, P., et al.: Back-Channel-Etched InGaZnO Thin-Film Transistors with Au Nanoparticles on the Back Channel Surface. Electron. Mater. Lett. 16, 115–122 (2020)

    Article  CAS  Google Scholar 

  8. Kim, D.Y., Kim, M.J., Sung, G., Sun, J.Y.: Stretchable and reflective displays: materials, technologies and strategies. Nano Converg. 6, 21 (2019)

    Article  Google Scholar 

  9. Zhang, L., Xiao, W., Wu, W., Liu, B.: Research progress on flexible oxide-based thin film transistors. Appl. Sci. (Switz.) (2019). https://doi.org/10.3390/app9040773

    Article  Google Scholar 

  10. Yoon, J., et al.: Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors. J. Alloys Compd. 817, 152788 (2020)

    Article  CAS  Google Scholar 

  11. Oh, T.: Tunneling phenomenon of amorphous indium-gallium-zinc-oxide thin film transistors for flexible display. Electron. Mater. Lett. 11, 853–861 (2015)

    Article  CAS  Google Scholar 

  12. Cho, S.H., et al.: Low temperature processed InGaZnO oxide thin film transistor using ultra-violet irradiation. Electron. Mater. Lett. 11, 360–365 (2015)

    Article  CAS  Google Scholar 

  13. Han, K.L., et al.: Comparative Study on Hydrogen Behavior in InGaZnO Thin Film Transistors with a SiO2/SiNx/SiO2 Buffer on Polyimide and Glass Substrates. Electron. Mater. Lett. 14, 749–754 (2018)

    Article  CAS  Google Scholar 

  14. Park, J.S., Jeong, J.K., Chung, H.J., Mo, Y.G., Kim, H.D.: Electronic transport properties of amorphous indium-gallium-zinc oxide semiconductor upon exposure to water. Appl. Phys. Lett. 92, 2006–2009 (2008)

    Google Scholar 

  15. Kang, D., et al.: Amorphous gallium indium zinc oxide thin film transistors: sensitive to oxygen molecules. Appl. Phys. Lett. 90, 10–13 (2007)

    Google Scholar 

  16. Ding, X., et al.: Effect of O2 plasma treatment on density-of-states in a-IGZO thin film transistors. Electron. Mater. Lett. 13, 45–50 (2017)

    Article  CAS  Google Scholar 

  17. Hu, Z., et al.: Thermal stability of amorphous InGaZnO thin film transistors passivated by AlOx layers. Solid State Electron. 104, 39–43 (2015)

    Article  CAS  Google Scholar 

  18. Zhou, Y., Dong, C.: Influence of passivation layers on positive gate bias-stress stability of amorphous InGaZnO thin-film transistors. Micromachines 9, 603 (2018)

    Article  Google Scholar 

  19. Son, K.S., et al.: Threshold voltage control of Amorphous gallium indium zinc oxide TFTs by suppressing back-channel current. Electrochem. Solid State Lett. 12, 26–29 (2008)

    Article  Google Scholar 

  20. Xiao, P., et al.: InGaZnO thin-film transistors modified by self-assembled monolayer with different alkyl chain length. IEEE Electron Device Lett. 36, 687–689 (2015)

    Article  CAS  Google Scholar 

  21. Lin, W.K., Liu, K.C., Chen, J.N., Hu, S.C., Chang, S.T.: The influence of fabrication process on top-gate thin-film transistors. Thin Solid Films 519, 5126–5130 (2011)

    Article  CAS  Google Scholar 

  22. Jang, S., et al.: Hybrid dielectrics composed of Al2O3 and phosphonic acid self-assembled monolayers for performance improvement in low voltage organic field effect transistors. Nano Converg. 5, 20 (2018)

    Article  Google Scholar 

  23. Xiao, P., et al.: InGaZnO thin-film transistors with back channel modification by organic self-assembled monolayers. Appl. Phys. Lett. 104, 051607 (2014)

    Article  Google Scholar 

  24. Xie, H., Liu, G., Zhang, L., Zhou, Y., Dong, C.: Amorphous oxide thin film transistors with nitrogen-doped hetero-structure channel layers. Appl. Sci. 7, 1099 (2017)

    Article  Google Scholar 

  25. Cho, S.H., et al.: Effect of self-assembled monolayer (SAM) on the oxide semiconductor thin film transistor. IEEE/OSA J. Disp. Technol. 8, 35–40 (2012)

    Article  CAS  Google Scholar 

  26. Zhong, W., Li, G., Lan, L., Li, B., Chen, R.: InSnZnO thin-film transistors with vapor- phase self-assembled monolayer as passivation layer. IEEE Electron Device Lett. 39, 1680–1683 (2018)

    Article  CAS  Google Scholar 

  27. Kim, Y.H., Kim, H.S., Han, J.I., Park, S.K.: Solvent-mediated threshold voltage shift in solution-processed transparent oxide thin-film transistors. Appl. Phys. Lett. 97, 2008–2011 (2010)

    Google Scholar 

  28. Jeong, J.K., Won Yang, H., Jeong, J.H., Mo, Y.G., Kim, H.D.: Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 93, 8–11 (2008)

    Google Scholar 

Download references

Acknowledgements

This work was supported by INHA University research grant (Grant No. 63090-01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rino Choi or Jeong-Hwan Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Cho, SY., Shin, YS. et al. Improving Electrical Stability of a-InGaZnO Thin-Film Transistors with Thermally Deposited Self-Assembled Monolayers. Electron. Mater. Lett. 16, 451–456 (2020). https://doi.org/10.1007/s13391-020-00232-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00232-1

Keywords

Navigation