Skip to main content
Log in

Effect of Lactic Acid on the Photoelectrocatalytic Water Splitting of Hematite Prepared by Hydrothermal Method

  • Original Article - Energy and Sustainability
  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The photoelectrocatalytic water splitting performance of the pristine hematite is limited because of its poor bulk charge separation efficiency. In this study, the lactic acid modified hematite films were grown in situ on Fluorine-doped tin oxide substrates by hydrothermal method and then annealed in nitrogen atmosphere. At 1.5 V versus RHE, the photocurrent density of the optimal lactic acid modified hematite photoanode (0.075LA-Fe2O3) was 1.5 mA cm− 2, which was three times that of the based hematite (0.5 mA cm− 2). The enhanced photoelectrocatalytic performance of the lactic acid modified hematite was attributed to its increased bulk charge separation efficiency caused by the oxygen vacancies and island-like pattern, as well as its improved surface charge injection efficiency. The effect of lactic acid on the morphology, crystalline structure and photoelectrocatalytic performance of the hematite photoanode are studied by systematical characterization.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Li, Z., Luo, W., Zhang, M., Feng, J., Zou, Z.: Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 6, 347 (2013)

    Article  CAS  Google Scholar 

  2. Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001)

    Article  Google Scholar 

  3. Zhao, X., Feng, J., Chen, S., Huang, Y., Sum, T.C., Chen, Z.: New insight into the roles of oxygen vacancy in hematite for solar water splitting. Phys. Chem. Chem. Phys. 19, 1074 (2017)

    Article  CAS  Google Scholar 

  4. Phuan, Y.W., Ong, W.J., Chong, M.N., Ocon, J.D.: Prospects of electrochemically synthesized hematite photoanodes for photoelectrochemical water splitting: a review. J. Photochem. Photobiol. C 33, 54 (2017)

    Article  CAS  Google Scholar 

  5. Wen, P., Su, F., Li, H., Sun, Y., Liang, Z., Liang, W., Zhang, J., Qin, W., Geyer, S.M., Qiu, Y., Jiang, L.: A Ni2P nanocrystal cocatalyst enhanced TiO2 photoanode towards highly efficient photoelectrochemical water splitting. Chem. Eng. J. 385, 123878 (2020)

    Article  Google Scholar 

  6. Ma, M., Zhang, K., Li, P., Jung, M.S., Jeong, M.J., Park, J.H.: Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew. Chem. Int. Ed. 55, 11819 (2016)

    Article  CAS  Google Scholar 

  7. Wang, S., Chen, P., Yun, J.H., Hu, Y., Wang, L.: An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem. Int. Ed. 56, 8500 (2017)

    Article  CAS  Google Scholar 

  8. Segev, G., Dotan, H., Malviya, K.D., Kay, A., Mayer, M.T., Grätzel, M., Rothschild, A.: High solar flux concentration water splitting with hematite (ɑ-Fe2O3) photoanodes. Adv. Energy Mater. 6, 1500817 (2016)

    Article  Google Scholar 

  9. Itoh, K., Bockris, J.M.: Thin film photoelectrochemistry: iron oxide. J. Electrochem. Soc. 131, 1266 (1984)

    Article  CAS  Google Scholar 

  10. Kennedy, J.H., Frese, K.W.: Photooxidation of water at α-Fe2O3 electrodes. J. Electrochem. Soc. 125, 709 (1978)

    Article  CAS  Google Scholar 

  11. Kay, A., Cesar, I., Grätzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714 (2006)

    Article  CAS  Google Scholar 

  12. Miao, C., Ji, S., Xu, G., Liu, G., Zhang, L., Ye, C.: Micro-nano-structured Fe2O3:Ti/ZnFe2O4 heterojunction films for water oxidation. ACS Appl. Mater. Interfaces 4, 4428 (2012)

    Article  CAS  Google Scholar 

  13. Deng, J., Zhong, J., Pu, A., Zhang, D., Li, M., Sun, X., Lee, S.T.: Ti-doped hematite nanostructures for solar water splitting with high efficiency. J. Appl. Phys. 112, 084312 (2012)

    Article  Google Scholar 

  14. Xie, J., Chen, J., Li, C.M.: Self-assembling reduced graphene quantum dots on hematite photoanode for passivating surface states toward significantly improved water splitting. Int. J. Hydrog. Energ. 42, 7158 (2017)

    Article  CAS  Google Scholar 

  15. Fu, L., Yu, H., Zhang, C., Shao, Z., Yi, B.: Cobalt phosphate group modified hematite nanorod array as photoanode for efficient solar water splitting. Electrochim. Acta 136, 363 (2014)

    Article  CAS  Google Scholar 

  16. Wang, G., Ling, Y., Li, Y.: Oxygen-deficient metal oxidenanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 4, 6682 (2012)

    Article  CAS  Google Scholar 

  17. Forster, M., Potter, R.J., Ling, Y., Yang, Y., Klug, D.R., Li, Y., Cowan, A.J.: Oxygen deficient ɑ-Fe2O3 photoelectrodes: a balance between enhanced electrical properties and trap-mediated losses. Chem. Sci. 6, 4009 (2015)

    Article  CAS  Google Scholar 

  18. Wang, Z., Mao, X., Chen, P., Xiao, M., Monny, S., Wang, S., Konarova, M., Du, A., Wang, L.: Understanding the roles of oxygen vacancy in hematite based photoelectrochemical process. Angew. Chem. Int. Ed. 131, 1042 ( (2019) ., )

    Article  Google Scholar 

  19. Vayssieres, L., Beermann, N., Lindquist, S.E., Hagfeldt, A.: Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides. Chem. Mater. 13, 233 (2001)

    Article  CAS  Google Scholar 

  20. Phuan, Y.W., Chong, M.N., Zhu, T., Yong, S.T., Chan, E.S.: Effects of annealing temperature on the physicochemical, optical and photoelectrochemical properties of nanostructured hematite thin films prepared via electrodeposition method. Mater. Res. Bull. 69, 71 (2015)

    Article  CAS  Google Scholar 

  21. Sugimoto, T., Wang, Y., Itoh, H., Muramatsu, A.: Systematic control of size, shape and internal structure of monodisperse α-Fe2O3 particles. Colloids Surf. A 134, 265 (1998)

    Article  CAS  Google Scholar 

  22. Iijima, M., Yonemochi, Y., Tsukada, M., Kamiya, H.: Microstructure control of iron hydroxide nanoparticles using surfactants with different molecular structures. J. Colloid Interface Sci. 298, 202 (2006)

    Article  CAS  Google Scholar 

  23. Zeng, S.Y., Tang, K.B., Li, T.W.: Controlled synthesis of α-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties. J. Colloid Interface Sci. 312, 513 (2007)

    Article  CAS  Google Scholar 

  24. Deng, J., Lv, X., Gao, J., Pu, A., Li, M., Sun, X., Zhong, J.: Facile synthesis of carbon-coated hematite nanostructures for solar water splitting. Energy Environ. Sci. 6, 1965 (2013)

    Article  CAS  Google Scholar 

  25. Xu, Y., Schoonen, M.A.: The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Miner. 85, 543 (2000)

    Article  CAS  Google Scholar 

  26. Li, L., Zhang, H., Liu, C.. Liang, P., Mitsuzaki, N., Chen, Z.: The effect of fast and slow surface states on photoelectrochemical performance of hematite photoanodes fabricated by electrodeposition and hydrothermal methods. J. Mater. Sci. 54, 659 (2019)

    Article  CAS  Google Scholar 

  27. Dotan, H., Sivula, K., Grätzel, M., Rothschild, A., Warren, S.C.: Probing the photoelectrochemical properties of hematite (α-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ. Sci. 4, 958 (2011)

    Article  CAS  Google Scholar 

  28. Shen, S., Lindley, S.A., Chen, X., Zhang, J.Z.: Hematite heterostructures for photoelectrochemical water splitting: rational materials design and charge carrier dynamics. Energy Environ. Sci. 9, 2744 (2016)

    Article  CAS  Google Scholar 

  29. Wang, G.G., Ling, Y., Wheeler, D.A., George, K.E., Horsley, K., Heske, C., Zhang, J.Z., Li, Y.: Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett. 11, 3503 (2011)

    Article  CAS  Google Scholar 

  30. Fu, Z., Jiang, T., Zhang, L., Liu, B., Wang, D., Wang, L., Xie, T.: Surface treatment with Al3+ on a Ti-doped ɑ-Fe2O3 nanorod array photoanode for efficient photoelectrochemical water splitting. J. Mater. Chem. A 2, 13705 (2014)

    Article  CAS  Google Scholar 

  31. Shinde, P.S., Choi, S.H., Kim, Y., Ryu, J., Jang, J.S.: Onset potential behavior in ɑ-Fe2O3 photoanodes: the influence of surface and diffusion Sn doping on the surface states. Phys. Chem. Chem. Phys. 18, 2495 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 51874050), the Natural Science Research Project of Colleges and Universities in Jiangsu Province (No. 19KJB510001) and Qing Lan Project of Jiangsu Province, PR China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhidong Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 6,376  kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Tang, H., Chen, Y. et al. Effect of Lactic Acid on the Photoelectrocatalytic Water Splitting of Hematite Prepared by Hydrothermal Method. Electron. Mater. Lett. 16, 481–490 (2020). https://doi.org/10.1007/s13391-020-00233-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-020-00233-0

Keywords

Navigation