Skip to main content

Advertisement

Log in

Impact of Initial Feeding and Molting on Tachypleus tridentatus Gut Microbiota

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Tri-spine horseshoe crabs (HSCs) Tachypleus tridentatus have been facing the threat of population depletion for decades, and the physiology and microbiology of their early life stages are lacking. To explore what directs the change of juvenile T. tridentatus gut microbiota and how gut microbiota change, by using 16S rRNA sequencing of gut samples we detected the intestinal microbiome of juvenile HSCs and compared the impact of initial molting and initial feeding, as well as the effect of environment. Results showed that the predominant phyla in the gut microbial community of juvenile HSCs are Proteobacteria and Bacteroidetes. The richness and diversity of intestinal microbes greatly decreased after initial molting. Microbial-mediated functions predicted by PICRUSt showed that “Signal Transduction”, “Cellular Processes and Signaling”, “Infective Diseases” and “Digestive System” pathways significantly increased in 2nd instars. As for the effect of environment, the connection between living environment and the intestinal microbiome started to manifest after initial molting. Unexpectedly, initial feeding treatment slightly affected the intestinal microbiome of T. tridentatus in the early life stage, whereas the effect of initial molting was significant. The present study provided the first insight into the gut microbiota of T. tridentatus, and the findings led a new sight to explain what guide the change of gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Sequence data that supports the findings of this study have been deposited in the National Center for Biotechnology Information (NCBI) with the BioProject accession number PRJNA624975 and PRJNA623068. Other datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hu MH, Wang YJ, Chen Y, Cheung SG, Shin PKS, Li QZ (2009) Summer distribution and abundance of juvenile Chinese horseshoe crabs Tachypleus tridentatus along an intertidal zone in southern China. Aquat Biol 7:107–112. https://doi.org/10.3354/ab00194

    Article  Google Scholar 

  2. Laurie K, Chen CP, Cheung SG, Do V, Hsieh H, John A, Mohamad F, Seino S, Nishida S, Shin P, Yang M (2019) Tachypleus tridentatus (errata version published in 2019). The IUCN Red List of Threatened Species 2019: e.T21309A149768986. https://doi.org/10.2305/IUCN.UK.2019-1.RLTS.T21309A149768986.en

  3. Liao YY, Hsieh HL, Xu SQ, Zhong QP, Lei J, Liang MZ, Fang HY, Xu LL, Lin WY, Xiao XB, Chen CP, Cheung SG, Kwan BKY (2019) Wisdom of crowds reveals decline of asian horseshoe crabs in Beibu Gulf, China. Oryx 53(2):222–229. https://doi.org/10.1017/S003060531700117X

    Article  Google Scholar 

  4. Vestbo S, Obst M, Fernandez FJQ, Intanai I, Funch P (2018) Present and potential future distributions of Asian horseshoe crabs determine areas for conservation. Front Mar Sci 5:164. https://doi.org/10.3389/fmars.2018.00164

    Article  Google Scholar 

  5. Tanacredi JT, Botton ML, Smith DR (2009) Biology and conservation of horseshoe crabs. Springer, Boston. https://doi.org/10.1007/978-0-387-89959-6

    Book  Google Scholar 

  6. Carmichael RH, Botton ML, Shin PKS, Cheung SG (2015) Changing global perspectives on horseshoe crab biology conservation and management. Springer, Boston. https://doi.org/10.1007/978-3-319-19542-1

    Book  Google Scholar 

  7. John BA, Nelson BR, Sheikh HI, Cheung SG, Wardiatno Y, Dash BP, Tsuchiya K, Iwasaki Y, Pati S (2018) Correction to: a review on fisheries and conservation status of Asian horseshoe crabs. Biodivers Conserv 27:3845–3845. https://doi.org/10.1007/s10531-018-1650-7

    Article  Google Scholar 

  8. Xie HL, Fan HQ, Liao YY, Guan JY, Qiu GL, Lin WY, Chen RF, Chen ZB (2017) Horseshoe crabs conservation: a triple winning strategy. Guangxi Sci 24:509–515. https://doi.org/10.13656/j.cnki.gxkx.20171101.001 (in Chinese)

    Article  Google Scholar 

  9. Cheng P, Zhou AN, Huo SF, Huang XM, Liu RZ, Lu XN, Weng ZC, Xu HX, Hong SG (2006) Study on adaptability to different environment for juvenile of horseshoe crab, Tachypleus tridentatus with artificial incubation. J Xiamen Univ 45:404–408. https://doi.org/10.3321/j.issn:0438-0479.2006.03.025 (in Chinese)

    Article  Google Scholar 

  10. Chang YJ, Sun CL, Yeh SZ (2012) Modelling the growth of crustacean species. Rev Fish Biol Fish 22:157–187. https://doi.org/10.1007/s11160-011-9228-4

    Article  Google Scholar 

  11. Mishra JK (2009) Larval culture of Tachypleus gigas and its molting behavior under laboratory conditions. In: Tanacredi J, Botton M, Smith D (eds) Biology and conservation of horseshoe crabs. Springer, Boston, pp 513–519. https://doi.org/10.1007/978-0-387-89959-6_32

    Chapter  Google Scholar 

  12. Carmichael RH, Gaines E, Sheller Z, Tong A, Clapp A, Valiela I (2009) Diet composition of juvenile horseshoe crabs: implications for growth and survival of natural and cultured stocks. In: Tanacredi J, Botton M, Smith D (eds) Biology and conservation of horseshoe crabs. Springer, Boston, pp 521–534

    Chapter  Google Scholar 

  13. Kwan BKY, Cheung SG, Shin PKS (2015) A dual stable isotope study for diet composition of juvenile Chinese horseshoe crab Tachypleus tridentatus (Xiphosura) on a seagrass-covered intertidal mudflat. Mar Biol 162:1137–1143. https://doi.org/10.1007/s00227-015-2647-3

    Article  CAS  Google Scholar 

  14. Hu MH, Wang YJ, Cheung SG, Shin PKS (2013) Comparison of different frozen natural foods on survival and growth of juvenile Chinese horseshoe crab Tachypleus tridentatus (leach, 1819): implications on laboratory culture. Aquac Res 44:567–573. https://doi.org/10.1111/j.1365-2109.2011.03059.x

    Article  Google Scholar 

  15. O'Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693. https://doi.org/10.1038/sj.embor.7400731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Zoetendal EG, Akkermans ADL, Vliet AV, Visser JAGMD, Vos WMD (2001) The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13:129–134. https://doi.org/10.1080/089106001750462669

    Article  Google Scholar 

  17. Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc Natl Acad Sci USA 101:4596–4601. https://doi.org/10.1073/pnas.0400706101

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Gill SR, Mihai P, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359. https://doi.org/10.1126/science.1124234

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, Fitzgerald MG, Fulton RS (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. https://doi.org/10.1038/nature11234

    Article  CAS  Google Scholar 

  20. Kumar PS, Brooker MR, Dowd SE, Camerlengo T, Badger JH (2011) Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. PLoS ONE 6:e20956. https://doi.org/10.1371/journal.pone.0020956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Bolger AM, Marc L, Bjoern U (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK (2012) FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 30:460–465. https://doi.org/10.1038/nbt.2170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Edgar RC, Haas BJ, Clemente JC, Christopher Q, Rob K (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194. https://doi.org/10.1093/bioinformatics/btr381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261. https://doi.org/10.1128/aem.00062-07

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Mcmurdie PJ, Susan H (2013) phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. https://doi.org/10.1371/journal.pone.0061217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Phillips CD, Phelan G, Dowd SE, Mcdonough MM, Ferguson AW, Delton HJ, Siles L, Ordóñez-Garza N, Francisco MS, Baker RJ (2012) Microbiome analysis among bats describes influences of host phylogeny, life history, physiology and geography. Mol Ecol 21:2617–2627. https://doi.org/10.1111/j.1365-294x.2012.05568.x

    Article  PubMed  Google Scholar 

  29. Miriam L, Jun W, Hardouin EA, Sven K, Dirk M, Baines JF (2013) The role of biogeography in shaping diversity of the intestinal microbiota in house mice. Mol Ecol 22:1904–1916. https://doi.org/10.1111/mec.12206

    Article  Google Scholar 

  30. Flint H, Bayer E, Rincon M, Lamed R, White B (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131. https://doi.org/10.1038/nrmicro1817

    Article  PubMed  CAS  Google Scholar 

  31. Flint HJ, Duncan SH, Scott KP, Petra L (2010) Interactions and competition within the microbial community of the human colon: links between diet and health. Environ Microbiol 9:1101–1111. https://doi.org/10.1111/j.1462-2920.2007.01281.x

    Article  CAS  Google Scholar 

  32. Arumugam M, Raes J, Pelletier E, Paslier DL, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM (2011) Enterotypes of the human gut microbiome. Nature 473:174. https://doi.org/10.1038/nature09944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Zhang M, Sun Y, Chen L, Cai C, Qiao F, Du Z, Li E (2016) Symbiotic bacteria in gills and guts of chinese mitten crab (Eriocheir sinensis) differ from the free-living bacteria in water. PLoS ONE 11:e0148135. https://doi.org/10.1371/journal.pone.0148135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Gao S, Pan LQ, Huang F, Song MS, Tian CC, Zhang MY (2018) Metagenomic insights into the structure and function of intestinal microbiota of the farmed pacific white shrimp (litopenaeus vannamei). Aquaculture 499:109–118. https://doi.org/10.1016/j.aquaculture.2018.09.026.35

    Article  Google Scholar 

  35. Jiang Y, Liu XZ, Xu YJ, Shi B, Wang B (2020) Microbiota characteristics in Sebastes schlegelii intestine in early life stages. J Ocean Limnol 38:275–287. https://doi.org/10.1007/s00343-019-9011-2

    Article  CAS  Google Scholar 

  36. Wu S, Wang G, Angert ER, Wang W, Li W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS ONE 7:e30440. https://doi.org/10.1371/journal.pone.0030440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhang H, Tang H, Zang Y, Tang X, Wang Y (2018) Microorganism's adaptation of Crucian carp may closely relate to its living environments. MicrobiologyOpen 8:e00650. https://doi.org/10.1002/mbo3.650

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hendricks-Muñoz KD, Xu J, Parikh HI, Xu P, Fettweis JM, Kim Y et al (2015) Skin-to-skin care and the development of the preterm infant oral microbiome. Am J Perinatol 32:1205–1216. https://doi.org/10.1055/s-0035-1552941

    Article  PubMed  PubMed Central  Google Scholar 

  39. Whiley RA, Fleming EV, Makhija R, Waite RD (2015) Environment and colonisation sequence are key parameters driving cooperation and competition between Pseudomonas aeruginosa cystic fibrosis strains and oral commensal streptococci. PLoS ONE 10:e0115513. https://doi.org/10.1371/journal.pone.0115513

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Biagi E, Aceti A, Quercia S, Beghetti I, Rampelli S, Turroni S, Soverini M, Zambrini AV, Faldella G, Candela M, Corvaglia L, Brigidi P (2018) Microbial community dynamics in mother's milk and infant's mouth and gut in moderately preterm infants. Front Microbiol 22(9):2512. https://doi.org/10.3389/fmicb.2018.02512.41

    Article  Google Scholar 

  41. Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL, Rodionov DA, Rodrigues JLM, Saffarini DA, Serres MH, Spormann AM, Zhulin IB, Tiedje JM (2008) Towards environmental systems biology of shewanella. Nat Rev Microbiol 6:592–603. https://doi.org/10.1038/nrmicro1947

    Article  PubMed  CAS  Google Scholar 

  42. François T, Jan-Hendrik H, Etienne R, Mirjam C, Gurvan M (2011) Environmental and gut bacteroidetes: the food connection. Front Microbiol 2:93. https://doi.org/10.3389/fmicb.2011.00093

    Article  Google Scholar 

  43. Turnbaugh PJ, Ley RE, Mahowald MA, Vincent M, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031. https://doi.org/10.1038/nature05414

    Article  PubMed  Google Scholar 

  44. Shin NR, Whon TW, Bae JW (2015) Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 33:496–503. https://doi.org/10.1016/j.tibtech.2015.06.011

    Article  PubMed  CAS  Google Scholar 

  45. Huang Z, Li X, Wang L, Shao Z (2016) Changes in the intestinal bacterial community during the growth of white shrimp, litopenaeus vannamei. Aquac Res 47:1737–1746. https://doi.org/10.1111/are.12628

    Article  Google Scholar 

  46. Stephens WZ, Burns AR, Stagaman K, Wong S, Rawls JF, Guillemin K, Bohannan BJM (2015) The composition of the zebrafish intestinal microbial community varies across development. ISME J 10:644–654. https://doi.org/10.1038/ismej.2015.140

    Article  PubMed  CAS  Google Scholar 

  47. Bergström A, Skov TH, Bahl MI, Roager HM, Christensen LB, Ejlerskov KT, Mølgaard C, Michaelsen KF, Licht TR (2014) Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of danish infants. Appl Environ Microbiol 80:2889–2900. https://doi.org/10.1128/AEM.00342-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Rogier EW, Frantz AL, Bruno MEC, Wedlund L, Cohen DA, Stromberg AJ, Kaetzel CS (2014) Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. Proc Natl Acad Sci USA 111:3074–3079. https://doi.org/10.1073/pnas.1315792111

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from 2017 Beihai City 13th 5-year Plan Marine Economic Innovation and Development Demonstration Project—Tachypleus Amebocyte Lysate and Chinese Horseshoe Crab Ecological Utilization Industry Chain Collaborative Innovation Project (Grant No.: Bhsfs006).

Author information

Authors and Affiliations

Authors

Contributions

MH and JS conceived this project. FM, ZZ and QL performed the research. FM analyzed the data. FM, MH and YW wrote the paper. And all authors participated in the revision of this paper by providing comments and editing.

Corresponding author

Correspondence to Menghong Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest. The cooperative enterprise in Tachypleus Amebocyte Lysate and Chinese Horseshoe Crab Ecological Utilization Industry Chain Collaborative Innovation Project (Grant No.: Bhsfs006)—Beihai Xinglong Biological Products Co., Ltd. has the "People's Republic of China Aquatic Wildlife Concession Capture Certificate" and the "People's Republic of China Aquatic Wildlife Domestication and Breeding License" issued by the Fisheries and Fisheries Administration of the Ministry of Agriculture. The adult horseshoe crabs used in our experiments were originally provided by Beihai Xinglong Biological Products Co., Ltd., and then were transported to Shanghai Collaborative Innovation Center for Aquatic Animal Genetics and Breeding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, F., Zhao, Z., Li, Q. et al. Impact of Initial Feeding and Molting on Tachypleus tridentatus Gut Microbiota. Curr Microbiol 77, 2847–2858 (2020). https://doi.org/10.1007/s00284-020-02108-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02108-x

Navigation