Skip to main content
Log in

Thermal characterization and lifetime prediction of the PHBV/nanocellulose biocomposites using different kinetic approaches

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In the present study, biocomposite films from cellulose nanocrystals (CNCs) were obtained by the solution casting method. CNCs were isolated from pineapple crown using chemical treatments followed by sulfuric acid hydrolysis and added into poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) matrix. The effect of freeze-dried CNC content (1, 3, and 5 wt%) on the structural, crystallization, thermal degradation lifetime prediction, and thermogravimetric simulation was investigated. An irreversible agglomeration observed after freeze-dried provided changes in the morphology and size of CNCs. Addition up to 3 wt% of CNCs increased the thermal stability, crystallization rate, and crystallinity index of PHBV, as showed by thermal and crystallinity analysis, respectively. The kinetic degradation study by thermogravimetric analysis (TGA) was done using the F-test method by statistically comparing degradation mechanisms in the solid-state. The most probable degradation mechanism was the autocatalytic reaction model for all samples (represented by Cn and Bna-types) with a suitable adjustment of the simulated curves. Lifetime prediction showed to be successfully applied based on the kinetic analysis, and PHBV reinforced with 3 wt% of CNCs presents the highest results for the isothermal temperature of 180 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgments

The authors would like to acknowledge Fundação de Apoio à Pesquisa do Estado de São Paulo—FAPESP (2011/14153-8 and 2015/10386-9), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (153335/2018-1) for fellowships and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kelly Cristina Coelho de Carvalho Benini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carvalho Benini, K.C.C., Ornaghi, H.L., de Medeiros, N.M. et al. Thermal characterization and lifetime prediction of the PHBV/nanocellulose biocomposites using different kinetic approaches. Cellulose 27, 7503–7522 (2020). https://doi.org/10.1007/s10570-020-03318-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03318-z

Keywords

Navigation