Skip to main content
Log in

Influence of water on the intrinsic characteristics of cellulose dissolved in an ionic liquid

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The local structure of cellulose, dissolved in the frequently used ionic liquid EMIm-OAc, is modelled by a coaxial double layer cylinder. The cylinder’s core consists of a cellulose chain while the sheath is formed by a solvent layer with lower electron density than the bulk solvent. We studied 2% cellulose solutions in EMIm-OAc and their behavior upon addition of increasing amounts of water. At this cellulose concentration, 15 wt% of water induced the precipitation of cellulose. Water molecules did not form an independent phase, but were bound to EMIm-OAc in the cellulose/water/EMIm-OAc solution. The conformational of a cellulose chain changes by adding water into the solution, and the square of the apparent cross-sectional radius of gyration of the cellulose chain becomes zero to negative. This phenomenon is explained by the formation of a solvation shell with lower electron density than the bulk solvent around the cellulose chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahn K, Zaccaron S, Rosenau T, Potthast A (2019) How alkaline solvents in viscosity measurements affect data for oxidatively damaged celluloses. Part 1. Cupri-ethylenediamine (CED, cuen). Biomacromolecules 20(11):4117–4125

    Article  CAS  Google Scholar 

  • Barthel S, Heinze T (2006) Acylation and carbanilation of cellulose in ionic liquids. Green Chem 8:301–306

    Article  CAS  Google Scholar 

  • Bengtsson J, Olsson C, Hedlund A, Köhnke T, Bialik E (2017) Understanding the inhibiting effect of small-molecule hydrogen bond donors on the solubility of cellulose in tetrabutylammonium acetate/DMSO. J Phys Chem B 121(50):11241–11248

    Article  CAS  Google Scholar 

  • Chen Y, Zhang Y, Ke F, Zhou J, Wang H, Liang D (2011) Solubility of neutral and charged polymers in ionic liquids studied by laser light scattering. Polymer 52:481–488

    Article  CAS  Google Scholar 

  • Cho HM, Gross AS, Chu JW (2011) Dissecting force interactions in cellulose deconstruction reveals the required solvent versatility for overcoming biomass recalcitrance. J Am Chem Soc 133:14033–14041

    Article  CAS  Google Scholar 

  • Ebner G, Schiehser S, Potthast A, Rosenau T (2008) Side reaction of cellulose with common 1-alkyl-3-methylimidazolium-based ionic liquids. Tetrahedron Lett 49:7322–7732

    Article  CAS  Google Scholar 

  • Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10:44–46

    Article  CAS  Google Scholar 

  • Gericke M, Schlufter K, Liebert T, Heinze T, Budtova T (2009) Rheological properties of cellulose/ionic liquid solutions: from dilute to concentrated states. Biomacromolecules 10:1188–1194

    Article  CAS  Google Scholar 

  • Ghoshdastidar D, Senapati S (2016) Ion-water wires in imidazolium-based ionic liquid/water solutions induce unique trends in density. Soft Matter 12:3032–3045

    Article  CAS  Google Scholar 

  • Hedlund A, Köhnke T, Theliander H (2015) Coagulation of EmimAc-cellulose solutions: dissolution-precipitation disparity and effects of non-solvents and cosolvent. Nordic Pulp Pap Res J 30(1):32–42

    Article  CAS  Google Scholar 

  • Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5:520–525

    Article  CAS  Google Scholar 

  • Henniges U, Kostic M, Borgards A, Rosenau T, Potthast A (2011) Dissolution behavior of different celluloses. Biomacromolecules 12:871–879

    Article  CAS  Google Scholar 

  • Kajiwara K, Wataoka I (2016) The method of small-angle X-ray scattering and its application to the structural analysis of oligo- and polysaccharides in solution. In: Matricardi P, Alhaique Coviello FT (eds) Polysaccharide hydrogels: characterization and biomedical applications. Pan Stanford Publishing, Singapore, pp 265–323

    Google Scholar 

  • Koide M, Wataoka I, Urakawa U, Kajiwara K, Henniges U, Rosenau T (2019) Intrinsic characteristics of cellulose chain in ionic liquid: the shape of a single cellulose molecule. Cellulose 26(4):2233–2242

    Article  Google Scholar 

  • Le KA, Rudaz C, Budtova T (2014) Phase diagram, solubility limit and hydrodynamic properties of cellulose in binary solvents with ionic liquid. Carbohydr Polym 105:237–243

    Article  CAS  Google Scholar 

  • Liebner F, Ebner G, Becker E, Potthast A, Rosenau T (2010) Thermal aging of 1-alkyl-3-methylimidazolium ionic liquids and its effect on dissolved cellulose. Holzforschung 64:161–166

    Article  CAS  Google Scholar 

  • Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114:4293–4301

    Article  CAS  Google Scholar 

  • Livsey I (1987) Neutron scattering from concentric cylinders. J Chem Soc Faraday Trans 2 83:1445–1452

    Article  Google Scholar 

  • Lynden-Bell RM, Del Popolo MG, Youngs TG, Kohanoff J, Hanke CG, Harper JB, Pinilla CC (2007) Simulations of ionic liquids, solutions, and surfaces. Acc Chem Res 40:1138–1145

    Article  CAS  Google Scholar 

  • Mazza M, Catana DA, Vaca-Garcia C, Cecutti C (2008) Influence of water on the dissolution of cellulose in selected ionic liquids. Cellulose 16:207–215

    Article  Google Scholar 

  • Miyamoto H, Sakakibara K, Wataoka I, Tsujii Y, Yamane C, Kajiwara K (2018) Interaction of water molecules with carboxyalkyl cellulose. In: Potthast A, Rosenau T (eds) Advances in cellulose science and technology: chemistry, analysis, and applications. Wiley, New York, pp 127–141

    Chapter  Google Scholar 

  • Mori T, Chikayama E, Tsuboi Y, Ishida N, Shisa N, Noritake Y, Moriya S, Kikuchi J (2012) Exploring the conformational space of amorphous cellulose using NMR chemical shifts. Carbohydr Polym 90:1197–1203

    Article  CAS  Google Scholar 

  • Moulthrop JS, Swatloski RP, Moyna G, Rogers RD (2005) High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun 12:1557–1559

    Article  Google Scholar 

  • Olsson C, Idstrom A, Nordstierna L, Westman G (2014) Influence of water on swelling and dissolution of cellulose in 1-ethyl-3-methylimidazolium acetate. Carbohydr Polym 99:438–446

    Article  CAS  Google Scholar 

  • Parviainen H, Parviainen A, Virtanen T, Kilpelainen I, Ahvenainen P, Serimaa R, Gronqvist S, Maloney T, Maunu SL (2014) Dissolution enthalpies of cellulose in ionic liquids. Carbohydr Polym 113:67–76

    Article  CAS  Google Scholar 

  • Potthast A, Rosenau T, Henniges U, Schiehser S, Kosma P, Saake B, Lebioda S, Radosta S, Vorwerg W, Wetzel H, Koschella A, Heinze T, Strobin G, Sixta H, Strlic M, Isogai A (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose 22(3):1591–1613

    Article  CAS  Google Scholar 

  • Rabideau BD, Agarwal A, Ismail AE (2013) Observed mechanism for the breakup of small bundles of cellulose I(alpha) and I(beta) in ionic liquids from molecular dynamics simulations. J Phys Chem B 117:3469–3479

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Kosma P, Chen CL, Gratzl JS (1999) Autocatalytic decomposition of n-methylmorpholine-n-oxide induced by mannich intermediates. J Org Chem 64:2166–2167

    Article  CAS  Google Scholar 

  • Rosenau T, Potthast A, Kosma P, Saariaho AM, Vuorinen T, Sixta H (2005) On the nature of carbonyl groups in cellulosic pulps. Cellulose 12:43–50

    Article  Google Scholar 

  • Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellulose with ionic liquids. J Am Chem Soc 124:4974–4975

    Article  CAS  Google Scholar 

  • Uto T, Yamamoto K, Kadokawa J (2018) Cellulose crystal dissolution in imidazolium-based ionic liquids: a theoretical study. J Phys Chem B 122:258–266

    Article  CAS  Google Scholar 

  • Youngs TGA, Holbrey JD, Mullan CL, Norman SE, Lagunas MC, D’Agostino C, Mantle MD, Gladden LF, Bowron DT, Hardacre C (2011) Neutron diffraction, NMR and molecular dynamics study of glucose dissolved in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Chem Sci 2:1594–1605

    Article  CAS  Google Scholar 

  • Zhao Y, Liu X, Wang J, Zhang S (2013) Effects of anionic structure on the dissolution of cellulose in ionic liquids revealed by molecular simulation. Carbohydr Polym 94:723–730

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed under the approval of the Photon Factory Program Advisory Committee (Proposal No. 2014G604 and 2015G147). This work was financially supported by the Center for Fiber Textile Science in Kyoto Institute of Technology, and the Astrian Biorefinery Center Tulln (ABCT). We gratefully acknowledge and the work of past and present members of our laboratories involved in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Wataoka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koide, M., Urakawa, H., Kajiwara, K. et al. Influence of water on the intrinsic characteristics of cellulose dissolved in an ionic liquid. Cellulose 27, 7389–7398 (2020). https://doi.org/10.1007/s10570-020-03323-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03323-2

Keywords

Navigation