Skip to main content
Log in

Shear Stress Increases V–H\(^{+}\)-ATPase and Acidic Vesicle Number Density, and p-mTORC2 Activation in Prostate Cancer Cells

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

Cells in the tumor microenvironment experience mechanical stresses, such as compression generated by uncontrolled cell growth within a tissue, increased substrate stiffness due to tumor cell extracellular matrix (ECM) remodeling, and leaky angiogenic vessels which involve low fluid shear stress. With our hypothesis that shear stress increases V–H\(^+\)-ATPase number density in prostate cancer cells via activation of the mTORC1 and mTORC2 pathways, we demonstrated and quantified such a mechanism in prostate cancer cells.

Methods

Moderately metastatic DU145 and highly metastatic PC3 prostate cancer cells were subjected to 0.05 dynes \(\hbox {cm}^{-2}\) wall shear stress for 24 h, followed by immunocytochemistry and fluorescence measurements of \(\beta\)1 integrin, endosome, lysosome, V–H\(^{+}\)-ATPase proton pump, mTORC1, and p-mTORC2 antibodies. Post shear stress migration assays, and the effects of vacuolar proton pump inhibitor Bafilomycin A1 (60 nM, 24 h) as well as shear stress on the ICC fluorescence intensity of the proteins of interest were conducted with DU145 cells.

Results

Low fluid shear stress increases the fluorescence intensity of \(\beta\)1 integrin, endosome, lysosome, V–H\(^{+}\)-ATPase, mTORC1, and p-mTORC2 antibodies in PC3 and DU145 cells, and also increased cell migration. However, Bafilomycin A1 decreased fluorescence intensity of all of these proteins in DU145 cells exposed to shear stress, revealing that V–H\(^+\)-ATPase controls the expression of these proteins.

Conclusions

Prostate cancer cell mechanotransduction increases endosomes, lysosomes, and proton pumps—where increases have been associated with enhanced cancer aggressiveness. We also show that the prostate cancer cell’s response to force promotes the cancer drivers mTORC1 and mTORC2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Betapudi, V., L. S. Licate, and T. T. Egelhoff. Distinct roles of nonmuscle myosin II isoforms in the regulation of MDA-MB-231 breast cancer cell spreading and migration. Cancer Res. 66:4725–4733, 2006.

    Article  Google Scholar 

  2. Burgess, A., S. Vigneron, E. Brioudes, J.-C. Labbé, T. Lorca, and A. Castro. Loss of human greatwall results in g2 arrest and multiple mitotic defects due to deregulation of the cyclin b-cdc2/pp2a balance. Proc. Natl. Acad. Sci. USA 107(28):12564–12569, 2010.

    Article  Google Scholar 

  3. Cotter, K., L. Stransky, C. McGuire, and M. Forgac. Recent insights into the structure, regulation, and function of the V-ATPases. Trends Biochem. Sci. 40:611–622, 2015.

    Article  Google Scholar 

  4. Davidson, S. M. and M. G. Vander-Heiden. Critical functions of the lysosome in cancer biology. Annu. Rev. Pharmacol. Toxicol. 57:481-507, 2017.

    Article  Google Scholar 

  5. Dielschneider, R. F., E. S. Henson, and S. B. Gibson. Lysosomes as oxidative targets for cancer therapy. Oxid. Med. Cell. Longev. 2017:3749157, 2017.

    Article  Google Scholar 

  6. Dozynkiewicz, M. A., N. B. Jamieson, I. MacPherson, J. Grindlay, P. V. van den Berghe, A. von Thun, J. P. Morton, C. Gourley, P. Timpson, C. Nixon, et al. Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev. Cell 22:131–145, 2012.

    Article  Google Scholar 

  7. Esen, E., J. Chen, C. M. Karner, A. L. Okunade, B. W. Patterson, and F. Long. WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 17:745–755, 2013.

    Article  Google Scholar 

  8. Fennelly, C. and R. K. Amaravadi. Lysosomal biology in cancer. Lysosomes Methods Protoc. 1594:293–308, 2017.

    Article  Google Scholar 

  9. Gomez, G. A., R. W. McLachlan, and A. S. Yap. Productive tension: force-sensing and homeostasis of cell-cell junctions. Trends Cell Biol. 21:499–505, 2011.

    Article  Google Scholar 

  10. Guertin, D. A. and D. M. Sabatini. Defining the role of mTOR in cancer. Cancer Cell 12:9–22, 2007.

    Article  Google Scholar 

  11. Gulhati, P., K. A. Bowen, J. Liu, P. D. Stevens, P. G. Rychahou, M. Chen, E. Y. Lee, H. L. Weiss, K. L. O’Connor, T. Gao, et al. mTORC1 and mTORC2 regulate EMT, motility and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res. 71(9):3246–3256, 2011.

    Article  Google Scholar 

  12. Hämälistö, S. and M. Jäättelä. Lysosomes in cancer–living on the edge (of the cell). Curr. Opin. Cell Biol. 39:69–76, 2016.

    Article  Google Scholar 

  13. Icard-Arcizet, D., O. Cardoso, A. Richert, and S. Hénon. Cell stiffening in response to external stress is correlated to actin recruitment. Biophys. J. 94:2906–2913, 2008.

    Article  Google Scholar 

  14. Jalali, S., M. A. del Pozo, K.-D. Chen, H. Miao, Y.-S. Li, M. A. Schwartz, J. Y.-J. Shyy, and S. Chien. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc. Natl. Acad. Sci. 98(3):1042–1046, 2001.

    Article  Google Scholar 

  15. Jilkova, Z. M., J. Lisowska, S. Manet, C. Verdier, V. Deplano, C. Geindreau, E. Faurobert, C. Albigès-Rizo, and A. Duperray. CCM proteins control endothelial \(\beta\)1 integrin dependent response to shear stress. Biol. Open 3(12):1228–1235, 2014.

    Article  Google Scholar 

  16. Kim, K. M., Y. J. Choi, J.-H. Hwang, A. R. Kim, H. J. Cho, E. S. Hwang, J. Y. Park, S.-H. Lee, and J.-H. Hong. Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS ONE 9(3):e92427, 2014.

    Article  Google Scholar 

  17. Laplante, M. and D. M. Sabatini. mTOR signaling in growth control and disease. Cell 149:274–293, 2012.

    Article  Google Scholar 

  18. Lee, H. J., M. F. Diaz, K. M. Price, J. A. Ozuna, S. Zhang, E. M. Sevick-Muraca, J. P. Hagan, and P. L. Wenzel. Fluid shear stress activates YAP1 to promote cancer cell motility. Nat. Commun. 8:14122, 2017.

    Article  Google Scholar 

  19. Liu, S., F. Zhou, Y. Shen, Y. Zhang, H. Yin, Y. Zeng, J. Liu, Z. Yan, and X. Liu. Fluid shear stress induces epithelial-mesenchymal transition (EMT) in Hep-2 cells. Oncotarget 7(22):32876, 2016.

    Article  Google Scholar 

  20. Marshansky, V. and M. Futai. The V-type H+-ATPase in vesicular trafficking: targeting, regulation and function. Curr. Opin. Cell Biol. 20:415–426, 2008.

    Article  Google Scholar 

  21. Marshansky, V., J. L. Rubinstein, and G. Grüber. Eukaryotic V-ATPase: novel structural findings and functional insights. Biochim. Biophys. Acta Bioener. 1837:857–879, 2014

    Google Scholar 

  22. Mellman, I. and Y. Yarden. Endocytosis and cancer. Cold Spring Harb. Perspect. Biol. 5:a016949, 2013.

    Article  Google Scholar 

  23. Pérez-Sayáns, M., J. M. Somoza-Martín, F. Barros-Angueira, J. M. G. Rey, and A. García-García. V-ATPase inhibitors and implication in cancer treatment. Cancer Treat. Rev. 35:707–713, 2009.

    Article  Google Scholar 

  24. Puri, C., M. V. Chibalina, S. D. Arden, A. J. Kruppa, J. Kendrick-Jones, and F. Buss. Overexpression of myosin VI in prostate cancer cells enhances PSA and VEGF secretion, but has no effect on endocytosis. Oncogene 29:188, 2010.

    Article  Google Scholar 

  25. Raghavan, V., Y. Rbaibi, N. M. Pastor-Soler, M. D. Carattino, and O. A. Weisz. Shear stress-dependent regulation of apical endocytosis in renal proximal tubule cells mediated by primary cilia. Proc. Natl. Acad. Sci. 111(23):8506–8511, 2014.

    Article  Google Scholar 

  26. Rainero, E. and J. C. Norman. Late endosomal and lysosomal trafficking during integrin-mediated cell migration and invasion: cell matrix receptors are trafficked through the late endosomal pathway in a way that dictates how cells migrate. BioEssays 35(6):523–532, 2013.

    Article  Google Scholar 

  27. Rath, O. and F. Kozielski. Kinesins and cancer. Nat. Rev. Cancer 12:527, 2012.

    Article  Google Scholar 

  28. Rizvi, I., U. A. Gurkan, S. Tasoglu, N. Alagic, J. P. Celli, L. B. Mensah, Z. Mai, U. Demirci, and T. Hasan. Flow induces epithelial-mesenchymal transition, cellular heterogeneity and biomarker modulation in 3D ovarian cancer nodules. Proc. Natl. Acad. Sci. USA 110:E1974–E1983, 2013.

    Article  Google Scholar 

  29. Rosner, M. and M. Hengstschläger. mTOR protein localization is cell cycle-regulated. Cell Cycle 10(20):3608–3610, 2011.

    Article  Google Scholar 

  30. Santos, J., Z. Khan, M. Munir, K. Tarafdar, S. Rahman, and F. Hussain. Vitamin \(D_3\) decreases glycolysis and invasiveness, and increases cellular stiffness in breast cancer cells. J. Nutr. Biochem. 53:111–120, 2017.

    Article  Google Scholar 

  31. Shieh, A. C. Biomechanical forces shape the tumor microenvironment. Ann. Biomed. Eng. 39:1379–1389, 2011.

    Article  Google Scholar 

  32. Shimobayashi, M. and M. N. Hall. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol. 15(3):155, 2014.

    Article  Google Scholar 

  33. Soldati, T. and M. Schliwa. Powering membrane traffic in endocytosis and recycling. Nat. Rev. Mol. Cell Biol. 7:897, 2006.

    Article  Google Scholar 

  34. Vitavska, O., H. Merzendorfer, and H. Wieczorek. The v-ATPase subunit c binds to polymeric F-actin as well as to monomeric g-actin and induces cross-linking of actin filaments. J. Biol. Chem. 280(2):1070–1076, 2005.

    Article  Google Scholar 

  35. Weiss, L. Biomechanical interactions of cancer cells with the microvasculature during hematogeneous metastasis. Cancer Metastasis Rev. 11:227–235, 1992.

    Article  Google Scholar 

  36. Wiedmann, R. M., K. Von Schwarzenberg, A. Palamidessi, L. Schreiner, R. Kubisch, J. Liebl, C. Schempp, D. Trauner, G. Vereb, S. Zahler, et al. The V-ATPase-inhibitor archazolid abrogates tumor metastasis via inhibition of endocytic activation of the Rho-GTPase Rac1. Cancer Res. 72:5976–5987, 2012.

    Article  Google Scholar 

  37. Yoshimori, T., A. Yamamoto, Y. Moriyama, M. Futai, and Y. Tashiro. Bafilomycin A1, a specific inhibitor of vacuolar-type H (+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. J. Biol. Chem. 266:17707–17712, 1991.

    Google Scholar 

  38. Zhou, X., Y. Liu, J. You, H. Zhang, X. Zhang, and L. Ye. Myosin light-chain kinase contributes to the proliferation and migration of breast cancer cells through cross-talk with activated ERK1/2. Cancer Lett. 270:312–327, 2008.

    Article  Google Scholar 

  39. Zoncu, R., L. Bar-Peled, A. Efeyan, S. Wang, Y. Sancak, and D. M. Sabatini, mtorc1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar h+-atpase. Science 334(6056):678–683, 2011.

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by “President’s Distinguished Chair in Engineering and Science” funds, Texas Tech University.

Conflict of interest

Zeina S. Khan and Fazle Hussain have no conflicts of interest.

Ethical Standard

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazle Hussain.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Z.S., Hussain, F. Shear Stress Increases V–H\(^{+}\)-ATPase and Acidic Vesicle Number Density, and p-mTORC2 Activation in Prostate Cancer Cells. Cel. Mol. Bioeng. 13, 591–604 (2020). https://doi.org/10.1007/s12195-020-00632-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-020-00632-1

Keywords

Navigation