Skip to main content
Log in

Characterization of fungal flora associated with sternorrhyncha insects of cotton plants

  • Original Article
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

In this study, 22 different fungal isolates associated with naturally dead insects of order Hemiptera including Bemisia tabaci, Aphis gossypii and Phenacoccus solenopsis were isolated from three different agroecological zones namely hot arid, cotton and central mixed zone. Fungal species were characterized morphologically on the basis of colony color, shape and spore structures through using different dichotomous keys. As a result fungi belonging to different species of Aspergillus, Acremonium, Beauveria, Cladosporium, Alternaria, Clonostachys, Penicillium, Trichoderma, Fusarium, Metarhizium and Verticillium were identified. All isolates of individual species were identical with respect to morphological differentiation. Principal component analysis (PCA) indicates strong correlation between Verticillium lecanii and Aspergillus fumigatus with respect to their isolation source (insect host). However, based on PCA, an uneven distribution of entomopathogenic fungi in different insect hosts is evident. Phylogenetic analysis revealed that Aspergillus fumigatus and A. nidulans are more closely related to different species of Penicillium, while Aspergillus oryzae and A. flavus formed separate clades, whereas different species of Alternaria, Cladosporium and Fusarium formed separate clades. Thus, the information generated will add to our understanding of the insect associated fungal communities for future development of potential biocontrol agents and their application as a vital component of sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adnan S (2009) Agroclimatic classification of Pakistan. Desertation, Comsat Institute of Technology Islamabad

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anees M, Tronsmo A, Edel-Hermann V, Hjeljord LG, Héraud C, Steinberg C (2010) Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani. Fungal Biol 11:691–701. https://doi.org/10.1016/j.funbio.2010.05.007

    Article  Google Scholar 

  • Anwar W, Haider MS, Shahid AA, Mushtaq H, Hameed U, Rehman MZ, Iqbal MJ (2017) Genetic diversity of Fusarium isolated from members of Sternorrhyncha (Hemiptera): Entomopathogens against Bemisia tabaci. Pakistan J Zool 49:639–645. https://doi.org/10.17582/journal.pjz/2017.49.2.639.645

    Article  Google Scholar 

  • Anwar W, Ali S, Nawaz K, Iftikhar S, Javed MA, Hashem A, Alqarawi AA, Abd-Allah EF, Akhter A (2018) Entomopathogenic fungus Clonostachys rosea as a biocontrol agent against whitefly (Bemisia tabaci). Biocontrol Sci Tech 28:750–760. https://doi.org/10.1080/09583157.2018.1487030

    Article  Google Scholar 

  • Assaf LH, Haleem RA, Abdullah SK (2011) Association of entomopathogenic and other opportunistic fungi with insects in dormant locations. Jordan J Biol Sci 4:87–92

    Google Scholar 

  • Bateman RP, Carey M, Moore D, Prior C (1993) The enhanced infectivity of Metarhizium flavoviride in oil formulations to desert locusts at low humidities. Ann Appl Biol 122:145–152. https://doi.org/10.1111/j.1744-7348.1993.tb04022.x

    Article  Google Scholar 

  • Bidochka MJ, Kasperski JE, Wild GAM (1998) Occurrence of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana in soils from temperate and near-northern habitats. Can J Bot 76:1198–1204. https://doi.org/10.1139/b98-115

    Article  Google Scholar 

  • Burges HD (1998) Formulation of mycoinsecticides. In: Burges HD (ed) Formulation of microbial biopesticides, 1st edn. Springer, Dordrecht, pp 131–185. https://doi.org/10.1007/978-94-011-4926-6_4

    Chapter  Google Scholar 

  • Butt TM, Jackson C, Magan N (2001) Fungi as biocontrol agents: progress problems and potential. CAB International, Oxfordshire

    Book  Google Scholar 

  • Choi IY, Hong SB, Yadav MC (2003) Molecular and morphological characterization of green mold, Trichoderma spp isolated from oyster mushrooms. Mycobiology 31:74–80. https://doi.org/10.4489/MYCO.2003.31.2.074

    Article  CAS  Google Scholar 

  • Chong HS (2016) Wither the concepts of mole and concentration: conceptual confusion in applying M1V1 = M2V2. Univ J Educ Res 4:1158–1162. https://doi.org/10.13189/ujer.2016.040527

    Article  Google Scholar 

  • de Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256. https://doi.org/10.1016/j.biocontrol.2007.08.001

    Article  CAS  Google Scholar 

  • Deshmukh AN (1998) Studies on leaf spot and fruit rot of chilli caused by Alternaria alternata. Dissertation, Mahatma Phule Agricullture University Krishi Vidyapeeth Rahuri

  • Doberski J, Tribe H (1980) Isolation of entomogenous fungi from elm bark and soil with reference to ecology of Beauveria bassiana and Metarhizium anisopliae. Mycol Res 74:95100. https://doi.org/10.1016/S0007-1536(80)80013-1

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi. Academic Press, London

    Google Scholar 

  • Eyal J, Mabud MA, Fischbein K, Walter J, Osborne L, Landa Z (1994) Assessment of Beauveria bassiana Nov. EO-1 strain, which produces a red pigment for microbial control. Appl Biochem Biotechnol 44:65–80. https://doi.org/10.1007/BF02921852

    Article  CAS  Google Scholar 

  • Ferron P (1978) Biological control of insect pests by entomogenous fungi. Annu Rev Entomol 23:409–442. https://doi.org/10.1146/annurev.en.23.010178.002205

    Article  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359. https://doi.org/10.1146/annurev.phyto.43.032904.092924

    Article  CAS  PubMed  Google Scholar 

  • Garrido-Jurado I, Fernández-Bravo M, Campos C, Quesada-Moraga E (2015) Diversity of entomopathogenic Hypocreales in soil and phylloplanes of five Mediterranean cropping systems. J Invertebr Pathol 130:97–106. https://doi.org/10.1016/j.jip.2015.06.001

    Article  PubMed  Google Scholar 

  • Ghosh CL (1998) Studies on Alternaria alternata (Fr.) Keissler of gerbera (Gerbera jamesonii hook.). Dissertation, Mahatma Phule Agricultural University Krishi Vidyapeeth Rahuri

  • Goettel MS, Inglis GD (1997) Fungi: Hyphomycetes. In: Lacey LA (ed) Manual of techniques in insect pathology, 1st edn. Elsevier, Washington, pp 213–249

    Chapter  Google Scholar 

  • Goettel MS, Hajek AE, Siegel JP, Evans HC (2001) Safety of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents. CAB International, Oxfordshire, pp 347–372

    Google Scholar 

  • Goettel MS, Eilenberg J, Glare TR (2005) Entomopathogenic fungi and their role in regulation of insect populations. In: Gilbert L, Iatrou K, Gill S (eds) Comprihensive molecular insect science, 2nd edn. Elsevier, Boston, pp 361–406

    Chapter  Google Scholar 

  • Gupta S, Krasnoff SB, Underwood NL, Renwick J, Roberts DW (1991) Isolation of beauvericin as an insect toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans. Mycopathologia 115:185–189. https://doi.org/10.1007/BF00462223

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hernández-Domínguez C, Guzmán-Franco AW, Carrillo-Benítez MG, Alatorre R, Rodríguez-Leyva E, Villanueva-Jiménez JA (2016) Specific diversity of Metarhizium isolates infecting Aeneolamia spp. (Hemiptera: Cercopidae) in sugarcane plantations. Neotrop Entomol 45:80–87. https://doi.org/10.1007/s13744-015-0337-y

    Article  PubMed  Google Scholar 

  • Hoog GD (1972) The genera Beauveria, Isaria, Tritiirachium and Acrodontium gen. nov. Stud Mycol 1:1–41

  • Humber RA (2012) Identification of entomopathogenic fungi. In: Lacey LA (ed) Manual of techniques in insect pathology, 2nd edn. Academic Press, San Diego, pp 151–186

    Google Scholar 

  • Huseth AS, Chappell TM, Chitturi A, Jacobson AL, Kennedy GG (2018) Insecticide resistance signals negative consequences of widespread neonicotinoid use on multiple field crops in the US cotton belt. Environ Sci Technol 52:2314–2322. https://doi.org/10.1021/acs.est.7b06015

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HYE, Salam AM, Abdel-Mogib MME, El-nagar Hoda SA, Nada SA (2011a) Survey of entomopathogenic fungi naturally infecting cowpea aphid, Aphis craccivora. Koch. J Plant Prot Pathol 2:1063–1070

  • Ibrahim L, Hamieh A, Ghanem H, Ibrahim S (2011b) Pathogenicity of entomopathogenic fungi from Lebanese soils against aphids, whitefly and nontarget beneficial insects. Int J Agric Sci 3:156–164. https://doi.org/10.9735/0975-3710.3.3.156-164

    Article  Google Scholar 

  • Ignoffo CM (1973) Effects of entomopathogens on vertebrates. Ann N Y Acad Sci 217:141–172. https://doi.org/10.1111/j.1749-6632.1973.tb32756.x

    Article  CAS  PubMed  Google Scholar 

  • Jankevica L (2004) Ecological associations between entomopathogenic fungi and pest insects recorded in Latvia. Latvijas Entomologs 41:60–65

    Google Scholar 

  • Javal M, Terblanche JS, Conlong DE, Malan AP (2019) First screening of entomopathogenic nematodes and fungus as biocontrol agents against an emerging pest of sugarcane, Cacosceles newmannii (Coleoptera: Cerambycidae). Insects 10:117. https://doi.org/10.3390/insects10040117

    Article  PubMed Central  Google Scholar 

  • Jones KA, Burges HD (1998) Technology of formulation and application. In: Burges HD (ed) Formulation of microbial biopesticides, 1st edn. Springer, Dordrecht, pp 7–30

    Chapter  Google Scholar 

  • Kessler P, Enkerl J, Schweize C, Keller S (2004) Survival of Beauveria brongniartii in the soil after application as a biocontrol agent against the European cockchafer Melolontha melolontha. BioControl 49:563–581. https://doi.org/10.1023/B:BICO.0000036441.40227.ed

    Article  Google Scholar 

  • Klich MA (2002) Identification of common Aspergillus species. Centraalbureau voor Schimmelcultures, Utrecht

    Google Scholar 

  • Kornerup A, Wanscher JH (1978) Methuen handbook of colour. Methuen Publishing, London

    Google Scholar 

  • Kouvelis VN, Sialakouma A, Typas MA (2008) Mitochondrial gene sequences alone or combined with ITS region sequences provide firm molecular criteria for the classification of Lecanicillium species. Mycol Res 112:829–844. https://doi.org/10.1016/j.mycres.2008.01.016

    Article  CAS  PubMed  Google Scholar 

  • Kubátová A, Dvorák L (2005) Entomopathogenic fungi associated with insect hibernating in underground shelters. Czech Mycol 57:3–4

    Article  Google Scholar 

  • Lacey L, Frutos R, Kaya H, Vail P (2001) Insect pathogens as biological control agents: do they have a future? Biol Control 21:230–248. https://doi.org/10.1006/bcon.2001.0938

    Article  Google Scholar 

  • McCoy GW, Samson RA, Boucias DG (1988) Entomogenous protozoa and fungi. In: Ignoffo CM (ed) CRC handbook of natural pesticides, 1st edn. CRC Press, Florida, p 243

    Google Scholar 

  • Medo J, Cagáň Ľ (2011) Factors affecting the occurrence of entomopathogenic fungi in soils of Slovakia as revealed using two methods. Biol Control 59:200–208. https://doi.org/10.1016/j.biocontrol.2011.07.020

    Article  Google Scholar 

  • Medo J, Michalko J, Medová J, Cagáň Ľ (2016) Phylogenetic structure and habitat associations of Beauveria species isolated from soils in Slovakia. J Invertebr Pathol 140:46–50. https://doi.org/10.1016/j.jip.2016.08.009

    Article  PubMed  Google Scholar 

  • Meyling NV, Eilenberg J (2006) Occurrence and distribution of soil borne entomopathogenic fungi within a single organic agroecosystem. Agric Ecosyst Environ 113:336–341. https://doi.org/10.1016/j.agee.2005.10.011

    Article  Google Scholar 

  • Mietkiewski RT, Pell JK, Clark SJ (1997) Influence of pesticide use on the natural occurrence of entomopathogenic fungi in arable soils in the UK: field and laboratory comparisons. Biocontrol Sci Tech 7:565–576. https://doi.org/10.1080/09583159730622

    Article  Google Scholar 

  • Moore D, Prior C (1993) The potential of mycoinsecticides. Biocontrol News Inf 14:31–40

    Google Scholar 

  • Moraes AM, Junqueira AC, Giordano CM (1998) Aspergilli from the digestive tract of Brazilian Triatomids. Mycotaxon 66:231–241

    Google Scholar 

  • Moss MO (1987) Morphology and physiology of Penicillium and Acremonium. In: Peberdy JF (ed) Penicillium and Acremonium, 1st edn. Springer, Boston, pp 37–71

    Chapter  Google Scholar 

  • Nagasi A, Parker BL, Brownbridge M (1998) Screening and bioassay of entomopathogenic fungi for the control of silverleaf whitefly, Bemisia argentifolli. Int J Trop Insect Sci 18:37–44. https://doi.org/10.1017/S174275840000744X

    Article  Google Scholar 

  • Narain A, Swain NC, Sahoo KC, Dash SK, Shukla VD (1985) A new leaf blight and fruit rot of watermelon. Indian Phytopathol 38:149–151

    Google Scholar 

  • Pérez-González VH, Guzmán-Franco AW, Alatorre-Rosas R, Hernández-López J, Hernández-López A, Carrillo-Benítez MG, Baverstock J (2014) Specific diversity of the entomopathogenic fungi Beauveria and Metarhizium in Mexican agricultural soils. J Invertebr Pathol 119:54–61. https://doi.org/10.1016/j.jip.2014.04.004

    Article  PubMed  Google Scholar 

  • Pitt JI (1979) The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. Academic Press, London

  • Prior C, Jollands P, le Patourel G (1988) Infectivity of oil and water formulations of Beauveria bassiana (Deuteromycotina: Hyphomycetes) to the cocoa weevil pest Pantorhytes plutus (Coleoptera: Curculionidae). J Invertebr Pathol 52:66–72. https://doi.org/10.1016/0022-2011(88)90103-6

    Article  Google Scholar 

  • Quesada-Moraga E, Navas-Cortés JA, Maranhao EAA, Ortiz-Urquiza A, Santiago-Álvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol Res 111:947–966. https://doi.org/10.1016/j.mycres.2007.06.006

    Article  PubMed  Google Scholar 

  • Rahjoo V, Zad J, Javan-Nikkhah M, Gohari AM, Okhovvat S, Bihamta M, Klemsdal S (2008) Morphological and molecular identification of Fusarium isolated from maize ears in Iran. Int J Plant Pathol 90:463–468. https://doi.org/10.4454/jpp.v90i3.688

    Article  CAS  Google Scholar 

  • Ramjegathesh R, Ebenezar EG (2012) Morphological and physiological characters of Alternaria alternata causing leaf blight disease of onion. Int J Plant Pathol 3:34–44. https://doi.org/10.3923/ijpp.2012.34.44

    Article  Google Scholar 

  • Rao VG (1965) Alternaria tenuis Auct. in Bombay-Maharashtra. Mycopathol Mycol Appl 27:257–264. https://doi.org/10.1007/BF02053781

  • Rath A, Koen T, Yip H (1992) The influence of abiotic factors on the distribution and abundance of Metarhizium anisopliae in Tasmanian pasture soils. Mycol Res 96:378–384. https://doi.org/10.1016/S0953-7562(09)80956-8

    Article  Google Scholar 

  • Roberts DW, Wraight SP (1986) Current status on the use of insect pathogens as biocontrol agents in agriculture Fungi. In: Robert A, Samson JMV, Dick P (eds) Fundamental and applied aspects of invertebrate pathology. Foundation of the Fourth Intl Colloquium of Invertebrate Pathology, Wageningen, pp 510–513

  • Roy HE, Vega FE, Chandler D, Goettel MS, Pell JK, Wajnberg E (2010) The ecology of fungal entomopathogens. Springer, Dordrecht

    Book  Google Scholar 

  • Rudeen ML, Jaronski ST, Petzold-Maxwell JL, Gassmann AJ (2013) Entomopathogenic fungi in cornfields and their potential to manage larval western corn rootworm Diabrotica virgifera virgifera. J Invertebr Pathol 114:329–332. https://doi.org/10.1016/j.jip.2013.09.009

    Article  PubMed  Google Scholar 

  • Sain SK, Monga D, Kumar R, Nagrale DT, Hiremani NS, Kranthi S (2019) Compatibility of entomopathogenic fungi with insecticides and their efficacy for IPM of Bemisia tabaci in cotton. J Pest Sci 44:97–105. https://doi.org/10.1584/jpestics.D18-067

    Article  CAS  Google Scholar 

  • Samson RA (1974) Paecilomyces and some allied Hyphomycetes. Stud Mycol 6:1–119

    Google Scholar 

  • Samuels GJ (1996) Trichoderma: a review of biology and systematics of the genus. Mycol Res 100:923–935. https://doi.org/10.1016/S0953-7562(96)80043-8

    Article  Google Scholar 

  • Samuels GJ, Dodd SL, Gams W, Castlebury LA, Petrini O (2002) Trichoderma species associated with the green mold epidemic of commercially grown Agaricus bisporus. Mycologia 94:146–170. https://doi.org/10.1080/15572536.2003.11833257

    Article  PubMed  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chainterminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467. https://doi.org/10.1073/pnas.74.12.5463

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Crous PW (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246. https://doi.org/10.1073/pnas.1117018109

  • Schroers HJ (2001) Monograph of Bionectria (Ascomycota, Hypocreales, Bionectriaceae) and its Clonostachys anamorphs. Centraalbureau voor Schimmel, Utrecht

    Google Scholar 

  • Schroers HJ, Samuels GJ, Seifert KA, Gams W (1999) Classification of the mycoparasite Gliocladium roseum in Clonostachys as C. rosea, its 197 relationship to Bionectria ochroleuca, and notes on other Gliocladium-like fungi. Mycologia 91:365–385. https://doi.org/10.1080/00275514.1999.12061028

    Article  Google Scholar 

  • Seye F, Bawin T, Boukraa S, Zimmer JY, Ndiaye M, Delvigne F, Francis F (2014) Pathogenicity of Aspergillus clavatus produced in a fungal biofilm bioreactor toward Culex quinquefasciatus (Diptera: Culicidae). J Pest Sci 39:127–132. https://doi.org/10.1584/jpestics.D14-006

    Article  CAS  Google Scholar 

  • Shah S, Nasreen S, Sheikh P (2012) Cultural and morphological characterization of Trichoderma spp. associated with green mold disease of Pleurotus spp. in Kashmir. Res J Microbiol 7:139–144. https://doi.org/10.3923/jm.2012.139.144

    Article  Google Scholar 

  • Shinde BM (1995) Investigation on leaf spot disease of soybean (Glycine max L. Merill) caused by Alternaria and Dreschslera. Dissertation, Mahatma Phule Agricultural University Krishi Vidyapeeth Rahuri

  • Shinde MA (2003) Studies on leaf spot of Aster (Callistephus chinensis L. Nees). Dissertation, Mahatma Phule Agricultural University Krishi Vidyapeeth Rahuri

  • Sonawane CS (1983) Part-I studies into post harvest diseases of pomegranate (Punica granatum L.). Dissertation, Mahatma Phule Agricultural University Krishi Vidyapeeth Rahuri

  • Stenglein SA, Balatti PA (2006) Genetic diversity of Phaeoisariopsis griseola in Argentina as revealed by pathogenic and molecular markers. Physiol Mol Plant Pathol 68:158–167. https://doi.org/10.1016/j.pmpp.2006.10.001

    Article  CAS  Google Scholar 

  • Sun BD, Liu XZ (2008) Occurrence and diversity of insect-associated fungi in natural soils in China. Appl Soil Ecol 39:100–108. https://doi.org/10.1016/j.apsoil.2007.12.001

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanada Y, Kaya HK (1993) Insect pathology. Academic Press, San Diego

    Google Scholar 

  • Teetor-Barsch GH, Roberts DW (1983) Entomogenous Fusarium species. Mycopathologia 84:3–16. https://doi.org/10.1007/BF00436991

    Article  CAS  PubMed  Google Scholar 

  • Toledo A, Virla E, Humber R, Paradell S, Lastra CL (2006) First record of Clonostachys rosea (Ascomycota: Hypocreales) as an entomopathogenic fungus of Oncometopia tucumana and Sonesimia grossa (Hemiptera: Cicadellidae) in Argentina. J Invertebr Pathol 92:7–10. https://doi.org/10.1016/j.jip.2005.10.005

    Article  CAS  PubMed  Google Scholar 

  • Topuz E, Erler F, Gumrukcu E (2016) Survey of indigenous entomopathogenic fungi and evaluation of their pathogenicity against the carmine spider mite, Tetranychus cinnabarinus (Boisd.), and the whitefly, Bemisia tabaci (Genn.) biotype B. Pest Manag Sci 72:2273–2279. https://doi.org/10.1002/ps.4266

    Article  CAS  PubMed  Google Scholar 

  • Tzean SS, Hsieh LS, Wu WJ (1997) Atlas of entomopathogenic fungi from Taiwan Council of Agriculture, Taiwan

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159. https://doi.org/10.1016/j.funeco.2009.05.001

    Article  Google Scholar 

  • Vestergaard S, Cherry A, Keller S, Goettel M (2003) Safety of Hyphomycete fungi as microbial control agents. In: Hokkanen HMT, Hajek AE (eds) Environmental impacts of microbial insecticides. Progress in biological control. Springer, Dordrecht, 1:35–62

  • Wakil W, Ghazanfar MU, Yasin M (2014) Naturally occurring entomopathogenic fungi infecting stored grain insect species in Punjab. Pakistan J Insect Sci 14:182. https://doi.org/10.1093/jisesa/ieu044

    Article  PubMed  Google Scholar 

  • Wang C, Typas MA, Butt TM (2002) Detection and characterization of pr1 virulent gene deficiencies in the insect pathogenic fungus Metarhizium anisopliae. FEMS Microbiol Lett 213:251–255. https://doi.org/10.1111/j.1574-6968.2002.tb11314.x

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Zimmermann G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Tech 17:553–596. https://doi.org/10.1080/09583150701309006

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded in part through the Pakistan-U.S. Cotton Productivity Enhancement Program USDA Agricultural Research Service Project No 58-6402-0-178F. We also acknowledg the team of First Fungal Culture Bank of Pakistan (FCBP), Institute of Agricultural Sciences (IAGS), University of the Punjab, Lahore, Pakistan for providing guidance in the identification of fungi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Akhter.

Ethics declarations

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, W., Nawaz, K., Javed, M.A. et al. Characterization of fungal flora associated with sternorrhyncha insects of cotton plants. Biologia 76, 533–547 (2021). https://doi.org/10.2478/s11756-020-00549-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-020-00549-0

Keywords

Navigation