Skip to main content
Log in

Formation and Relative Stabilities of Core-Shelled L12-Phase Nano-structures in Dilute Al–Sc–Er Alloys

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

First-principles thermodynamic calculations were carried out at the interface level for understanding the precipitation of coherent L12-phase nano-structures in dilute Al–Sc–Er alloys. All energetics, relevant to bulk substitution, interface formation, interfacial coherent strain and segregation, were calculated and used to evaluate the nucleation and relative stabilities of various possible L12 nano-structures. Only matrix-dissolved solute Er (or Sc) can substitute Sc (or Er) in L12-Al3Sc (or Al3Er). The inter-substitution between L12-Al3Sc and Al3Er is not energy feasible. Ternary L12-Al3(ErxSc1−x) precipitates tend to form the Al3Er-core and Al3Sc-shell structure with a sharp core/shell interface. Three possible formation mechanisms were proposed and examined. The effects of Er/Sc ratio and aging temperature on the relative stabilities of L12-phase nano-structures in Al were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E.A. Marquis, D.N. Seidman, Acta Mater. 49, 1909 (2001)

    CAS  Google Scholar 

  2. D.N. Seidman, E.A. Marquis, D.C. Dunand, Acta Mater. 50, 4021 (2002)

    CAS  Google Scholar 

  3. J. Røyset, N. Ryum, Int. Mater. Rev. 50, 19 (2005)

    Google Scholar 

  4. A. Berezina, T. Monastyrska, O. Davydenko, O. Molebny, S. Polishchuk, Nanoscale Res. Lett. 12, 220 (2017)

    Google Scholar 

  5. K.E. Knipling, Microsc. Microanal. 22, 688 (2016)

    Google Scholar 

  6. M.E. van Dalen, D.C. Dunand, D.N. Seidman, Acta Mater. 53, 4225 (2005)

    Google Scholar 

  7. A.V. Pozdniakov, R.Y. Barkov, J. Mater. Sci. Technol. 36, 1 (2020)

    Google Scholar 

  8. X.C. Xia, Q.F. Zhao, Y.Y. Peng, P. Zhang, L.H. Liu, J. Ding, X.D. Luo, L.S. Wang, L.X. Huang, H.J. Zhang, X.G. Chen, J. Alloys Compd. 818, 153370 (2020)

    CAS  Google Scholar 

  9. B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, K. Marthinsen, Scr. Mater. 51, 333 (2004)

    CAS  Google Scholar 

  10. C.B. Fuller, J.L. Murray, D.N. Seidman, Acta Mater. 53, 5401 (2005)

    CAS  Google Scholar 

  11. C.B. Fuller, D.N. Seidman, Acta Mater. 53, 5415 (2005)

    CAS  Google Scholar 

  12. A. Tolley, V. Radmilovic, U. Dahmen, Scr. Mater. 52, 621 (2005)

    CAS  Google Scholar 

  13. M.E. van Dalen, D.C. Dunand, D.N. Seidman, J. Mater. Sci. 41, 7814 (2006)

    CAS  Google Scholar 

  14. R.A. Karnesky, D.C. Dunand, D.N. Seidman, Acta Mater. 57, 4022 (2009)

    CAS  Google Scholar 

  15. M.E. Krug, A. Werber, D.C. Dunand, D.N. Seidman, Acta Mater. 58, 134 (2010)

    CAS  Google Scholar 

  16. M.E. Van Dalen, D.C. Dunand, D.N. Seidman, Acta Mater. 59, 5224 (2011)

    Google Scholar 

  17. M.E. van Dalen, R.A. Karnesky, J.R. Cabotaje, D.C. Dunand, D.N. Seidman, Acta Mater. 57, 4081 (2009)

    Google Scholar 

  18. S.I. Fujikawa, Defect Diffus. Forum. 143–147, 115 (1997)

    Google Scholar 

  19. K.E. Knipling, D.C. Dunand, D.N. Seidman, Z. Metallkd. 97, 246 (2006)

    CAS  Google Scholar 

  20. R.A. Karnesky, D.N. Seidman, D.C. Dunand, Mater. Sci. Forum 519–521, 1035 (2006)

    Google Scholar 

  21. E. Clouet, L. Lae, T. Epicier, W. Lefebvre, M. Nastar, A. Deschamps, Nat. Mater. 5, 482 (2006)

    CAS  Google Scholar 

  22. C.M. Zhang, Y. Jiang, F.H. Cao, T. Hu, Y.R. Wang, D.F. Yin, J. Mater. Sci. Technol. 35, 930 (2019)

    Google Scholar 

  23. J. Furthmüller, J. Hafner, G. Kresse, Phys. Rev. B: Condens. Matter 50, 15606 (1994)

    Google Scholar 

  24. W. Dong, G. Kresse, J. Furthmüller, J. Hafner, Phys. Rev. B Condens. Matter. 54, 2157 (1996)

    CAS  Google Scholar 

  25. G. Kresse, D. Joubert, Phys. Rev. B Condens. Matter. 59, 1758 (1999)

    CAS  Google Scholar 

  26. X. Zhang, T. Hu, J.F. Rufner, T.B. LaGrange, G.H. Campbell, E.J. Lavernia, J.M. Schoenung, K. van Benthem, Acta Mater. 95, 254 (2015)

    CAS  Google Scholar 

  27. J. Leese, A.E. Lord, J. Appl. Phys. 39, 3986 (1968)

    CAS  Google Scholar 

  28. P. Vinett, J.H. Rose, J. Ferrante, J.R. Smith, J. Phys, Condens. Mater. 1, 1941 (1989)

    Google Scholar 

  29. C. Woodward, M. Asta, G. Kresse, J. Hafner, Phys. Rev. B 63, 094103 (2001)

    Google Scholar 

  30. K. Syassen, W.B. Holzapfel, J. App. Phys. 49, 4427 (1978)

    CAS  Google Scholar 

  31. P. Paufler, P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals. Metals Park, Ohio, 1986), p. 3258

    Google Scholar 

  32. Z. Mao, W. Chen, D.N. Seidman, C. Wolverton, Acta Mater. 59, 3012 (2011)

    CAS  Google Scholar 

  33. Y. Harada, D.C. Dunand, Intermetallics 17, 17 (2009)

    CAS  Google Scholar 

  34. Z.G. Chen, S.P. Ringer, Z.Q. Zheng, J. Zhong, Mater. Sci. Forum 546–549, 629 (2007)

    Google Scholar 

  35. C.M. Zhang, D.F. Yin, Y. Jiang, Y.R. Wang, Comp. Mater. Sci. 162, 171 (2019)

    CAS  Google Scholar 

  36. Y. Wang, Z.K. Liu, L.Q. Chen, C. Wolverton, Acta Mater. 55, 5934 (2007)

    CAS  Google Scholar 

  37. V. Ozolins, C. Wolverton, A. Zunger, Phys. Rev. B 57, 4816 (1998)

    CAS  Google Scholar 

  38. V. Vaithyanathan, C. Wolverton, L.Q. Chen, Acta Mater. 52, 2973 (2004)

    CAS  Google Scholar 

  39. Y. Jiang, J.R. Smith, A.G. Evans, Phys. Rev. B 74, 224110 (2006)

    Google Scholar 

  40. V. Ozolins, M. Asta, Phys. Rev. Lett. 86, 448 (2001)

    CAS  Google Scholar 

  41. Z. Mao, D.N. Seidman, C. Wolverton, Acta Mater. 59, 3659 (2011)

    CAS  Google Scholar 

  42. Y. Zhang, K. Gao, S. Wen, H. Huang, W. Wang, Z. Zhu, Z. Nie, D. Zhou, J. Alloys Compd. 590, 526 (2014)

    CAS  Google Scholar 

  43. M. Song, K. Du, Z.Y. Huang, H. Huang, Z.R. Nie, H.Q. Ye, Acta Mater. 81, 409 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51971249), the National MCF Energy R&D Program of China (Project No. 2018YFE0306100) and the Key Research and Development Projects of Shandong Province (No. 2017GGX20130).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Jiang or Kexing Song.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Jiang, Y., Guo, X. et al. Formation and Relative Stabilities of Core-Shelled L12-Phase Nano-structures in Dilute Al–Sc–Er Alloys. Acta Metall. Sin. (Engl. Lett.) 33, 1627–1634 (2020). https://doi.org/10.1007/s40195-020-01096-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01096-y

Keywords

Navigation