Skip to main content

Advertisement

Log in

Ultra-thin Piezoelectric Lattice for Vibration Suppression in Pipe Conveying Fluid

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

In this paper, an electrically active, ultra-thin, easy-to-implement, and tunable phononic crystal (PC)-based device is proposed to suppress excessive vibration in pipes conveying fluids. We demonstrate that this device can be realized by periodic implementation of piezoelectric patches with shunt circuits on the pipe acting as PCs for vibration suppression. The mathematical model of the pipe structure is simplified to the form of the Euler–Bernoulli beam, and the transfer matrix method and the finite element method are used to predict the effective bandgap. Conversion between mechanical vibration energy and electrical energy via the piezoelectric effect is observed. As a result, the pipe vibration is suppressed by combined Bragg and electroelastic bandgaps. The comparison with previous literature shows that this ultra-compact device provides a new solution for vibration and noise control in long-distance fluid-conveying pipe systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ginsberg JH. The dynamic stability of a pipe conveying a pulsatile flow. Int J Eng Sci. 1973;11:1013–24.

    Article  Google Scholar 

  2. Païdoussis MP, Issid NT. Dynamic stability of pipes conveying fluid. J Sound Vib. 1974;33:267–94.

    Article  Google Scholar 

  3. Kang MG. The influence of rotary inertia of concentrated masses on the natural vibrations of fluid-conveying pipes. J Sound Vib. 2000;238:179–87.

    Article  Google Scholar 

  4. Yang XD, Yang TZ, Jin JD. Dynamic stability of a beam-model viscoelastic pipe for conveying pulsative fluid. Acta Mech Solida Sin. 2007;20:350–6.

    Article  Google Scholar 

  5. Benjamin TB. Dynamics of a system of articulated pipes conveying fluid. II. Experiments. 1961;261:487–99.

    MathSciNet  MATH  Google Scholar 

  6. Chen SS. Vibration and stability of a uniformly curved tube conveying fluid. J Acoust Soc Am. 1971;51:1087.

    Google Scholar 

  7. Ghayesh MH, Païdoussis MP, Modarres-Sadeghi Y. Three-dimensional dynamics of a fluid-conveying cantilevered pipe fitted with an additional spring-support and an end-mass. J Sound Vib. 2011;330:2869–99.

    Article  Google Scholar 

  8. Ghayesh MH, Païdoussis MP, Amabili M. Nonlinear dynamics of cantilevered extensible pipes conveying fluid. J Sound Vib. 2013;332:6405–18.

    Article  Google Scholar 

  9. Ghayesh MH. Nonlinear oscillations of FG cantilevers. Appl Acoust. 2019;145:393–8.

    Article  Google Scholar 

  10. Tan X, Mao XY, Ding H, Chen LQ. Vibration around non-trivial equilibrium of a supercritical Timoshenko pipe conveying fluid. J Sound Vib. 2018;428:104–18.

    Article  Google Scholar 

  11. Pisarski D, Konowrocki R, Szmidt T. Dynamics and optimal control of an electromagnetically actuated cantilever pipe conveying fluid. J Sound Vib. 2018;432:420–36.

    Article  Google Scholar 

  12. Païdoussis MP, Semler C. Non-linear dynamics of a fluid-conveying cantilevered pipe with a small mass attached at the free end. Int J Non-Linear Mech. 1998;33:15–32.

    Article  Google Scholar 

  13. Païdoussis MP, Li GX. Pipes conveying fluid: a model dynamical problem. J Fluids Struct. 1993;7:137–204.

    Article  Google Scholar 

  14. Gregory RW, Paidoussis MP. Unstable oscillation of tubular cantilevers conveying fluid. I. Theory. 1966;293:512–27.

    MATH  Google Scholar 

  15. Chen LQ, Zhang YL, Zhang GC, Ding H. Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed. Int J Non-Linear Mech. 2014;58:11–21.

    Article  Google Scholar 

  16. Wang L, Jiang TL, Dai HL. Three-dimensional dynamics of supported pipes conveying fluid. Acta Mech Sin. 2017;33:1065–74.

    Article  MathSciNet  Google Scholar 

  17. Liang F, Yang XD, Zhang W, Qian YJ. Nonlinear free vibration of spinning viscoelastic pipes conveying fluid. Int J Appl Mech. 2018;10(07):1850076.

    Article  Google Scholar 

  18. Liang F, Yang XD, Zhang W, Qian Y-J. Vibrations in 3D space of a spinning supported pipe exposed to internal and external annular flows. J Fluids Struct. 2019;87:247–62.

    Article  Google Scholar 

  19. Tang Y, Yang TZ. Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material. Compos Struct. 2018;185:393–400.

    Article  Google Scholar 

  20. Yu DL, Paidoussis MP, Shen HJ, Wang L. Dynamic stability of periodic pipes conveying fluid. J Appl Mech. 2014;81:011008.

    Article  Google Scholar 

  21. Wang L, Ni Q, Li M. Buckling instability of double-wall carbon nanotubes conveying fluid. Comput Mater Sci. 2008;44:821–5.

    Article  Google Scholar 

  22. Yang TZ, Ji S, Yang XD, Fang B. Microfluid-induced nonlinear free vibration of microtubes. Int J Eng Sci. 2014;76:47–55.

    Article  Google Scholar 

  23. Iijima S. Helical microtubules of graphitic carbon. Nature. 1991;354:56–8.

    Article  Google Scholar 

  24. Wang L, Hong Y, Dai H, Ni Q. Natural frequency and stability tuning of cantilevered CNTs conveying fluid in magnetic field. Acta Mech Solida Sin. 2016;29:567–76.

    Article  Google Scholar 

  25. Dehrouyeh-Semnani AM, Nikkhah-Bahrami M, Yazdi MRH. On nonlinear vibrations of micropipes conveying fluid. Int J Eng Sci. 2017;117:20–33.

    Article  MathSciNet  Google Scholar 

  26. Jiang J, Zhang P, Patil D, Li HN, Song G. Experimental studies on the effectiveness and robustness of a pounding tuned mass damper for vibration suppression of a submerged cylindrical pipe. Struct Control Health Monit. 2017;24(12):e2027.

    Article  Google Scholar 

  27. Zhang YW, Yuan B, Fang B, Chen LQ. Reducing thermal shock-induced vibration of an axially moving beam via a nonlinear energy sink. Nonlinear Dyn. 2016;87:1159–67.

    Article  Google Scholar 

  28. Zhang YW, Zhang Z, Chen LQ, Yang TZ, Fang B, Zang J. Impulse-induced vibration suppression of an axially moving beam with parallel nonlinear energy sinks. Nonlinear Dyn. 2015;82:61–71.

    Article  MathSciNet  Google Scholar 

  29. Yang TZ, Liu T, Tang Y, Hou S, Lv XF. Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear. Nonlinear Dyn 97, 1937–1944 (2019).

  30. Ding H, Ji J, Chen LQ. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mech Syst Signal Process. 2019;121:675–88.

    Article  Google Scholar 

  31. Li S, Jiang W, Tu ST. Life prediction model of creep-rupture and creep-buckling of a pyramidal lattice truss panel structure by analytical and finite element study. Int J Mech Sci. 2018;141:502–11.

    Article  Google Scholar 

  32. Wang YZ, Wang YS. Active control of elastic wave propagation in nonlinear phononic crystals consisting of diatomic lattice chain. Wave Motion. 2018;78:1–8.

    Article  MathSciNet  Google Scholar 

  33. Sigalas MM, Economou EN. Elastic and acoustic wave band structure. J Sound Vib. 1992;158:377–82.

    Article  Google Scholar 

  34. Kushwaha MS, Halevi P, Martinez G, Dobrzynski L, Djafari-Rouhani B. Theory of acoustic band structure of periodic elastic composites. Phys Rev B: Condens Matter. 1994;49:2313–22.

    Article  Google Scholar 

  35. Liu Z, Zhang X, Mao Y, Zhu YY, Yang Z, Chan CT, Sheng P. Locally resonant sonic materials. Science. 2000;289:1734–6.

    Article  Google Scholar 

  36. Wang G, Wen XS, Wen JH, Liu YZ. Quasi-one-dimensional periodic structure with locally resonant band gap. J. Appl. Mech. 2006;73(1):167–70.

    Article  Google Scholar 

  37. Yu DL, Wen JH, Zhao HG, Liu YZ, Wen XS. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. J Sound Vib. 2008;318:193–205.

    Article  Google Scholar 

  38. Park CH, Inman DJ. Enhanced piezoelectric shunt design. Shock Vib. 2003;10:127–33.

    Article  Google Scholar 

  39. Preumont A, Marneffe B, de Deraemaeker A, Bossens F. The damping of a truss structure with a piezoelectric transducer. Comput Struct. 2008;86:227–39.

    Article  Google Scholar 

  40. Lee SY, Mote JCD. A generalized treatment of the energetics of translating continua, Part II: beams and fluid conveying pipes. J Sound Vib. 1997;204:735–53.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China [Grant Numbers 11972245, 11672187, 11902001] and the China Postdoctoral Science Foundation funded project [Grant Number 2018M641643].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, X., Chen, F., Ren, Q. et al. Ultra-thin Piezoelectric Lattice for Vibration Suppression in Pipe Conveying Fluid. Acta Mech. Solida Sin. 33, 770–780 (2020). https://doi.org/10.1007/s10338-020-00174-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-020-00174-z

Keywords

Navigation