Skip to main content
Log in

Robust optimum design of a tuned mass damper inerter

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The current work describes the optimum design of a tuned mass damper inerter (TMDI) to control a benchmark 10-story base-excited linear shear building under seismic excitations. Mass and inertance ratios are preselected, and optimum free vibration parameters of the TMDI (i.e., natural frequency and damping ratios) are calculated for single degree-of-freedom (SDOF) and multi degree-of-freedom (MDOF) models with different configurations of single and double inerter TMDIs at different locations using the colliding bodies optimization technique. Four different inherent damping values are considered for each analysis. Minimizing the \(H_{\mathrm{\infty }}\) norm of the roof displacement transfer function is considered as the objective function for robust control of the building. Additionally, the optimum designed damper performance and its robustness is assessed in both the frequency and time domains. Results show that while being robust, the SDOF-based optimized TMDI approach should be used with caution and it is recommended to optimize and employ the TMDI using the MDOF model. Results indicate the superior performance of the proposed well-tuned damper with proper configuration in comparison to a same weight/mass classical TMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Soong, T.T.: Active Structural Control Theory and Practice, 1st edn. Wiley, New York (1990)

    Google Scholar 

  2. Sun, J.Q., Jolly, M.R., Norris, M.A.: Passive, adaptive and active tuned vibration absorbers—a survey. J. Vib. Acoust. Trans. ASME 117, 234–242 (1995)

    Article  Google Scholar 

  3. Tributsch, A., Adam, C.: Evaluation and analytical approximation of tuned mass damper performance in an earthquake environment. Smart Struct. Syst. 10(2), 155–179 (2012). https://doi.org/10.12989/sss.2012.10.2.155

    Article  Google Scholar 

  4. Gutierrez Soto, M., Adeli, H.: Tuned mass dampers. Arch. Comput. Methods Eng. 20(4), 419–431 (2013)

    Article  Google Scholar 

  5. Den Hartog, J.P.: Mechanical Vibrations, 4th edn. Dover Publications, New York (1956)

    MATH  Google Scholar 

  6. Ruiz, R., Taflanidis, A.A., Giaralis, A., Lopez-Garcia, D.: Risk-informed optimization of the tuned mass-damper–inerter (TMDI) for the seismic protection of multi-storey building structures. Eng. Struct. 177, 836–850 (2018). https://doi.org/10.1016/j.engstruct.2018.08.074

    Article  Google Scholar 

  7. Marian, L., Giaralis, A.: Optimal design of a novel tuned mass-damper–inerter (TMDI) passive vibration control configuration for stochastically support-excited structural systems. Probab. Eng. Mech. 38, 156–164 (2015). https://doi.org/10.1016/j.probengmech.2014.03.007

    Article  Google Scholar 

  8. Elias, S., Matsagar, V.: Research developments in vibration control of structures using passive tuned mass dampers. Annu. Rev. Control 44, 129–156 (2017)

    Article  Google Scholar 

  9. Bekdaş, G., Nigdeli, S.M., Yang, X.-S.: A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Eng. Struct. 159, 89–98 (2018)

    Article  Google Scholar 

  10. Bekdaş, G., Nigdeli, S.M.: Metaheuristic based optimization of tuned mass dampers under earthquake excitation by considering soil–structure interaction. Soil Dyn. Earthq. Eng. 92, 443–461 (2017). https://doi.org/10.1016/j.soildyn.2016.10.019

    Article  Google Scholar 

  11. Salvi, J., Rizzi, E.: Closed-form optimum tuning formulas for passive tuned mass dampers under benchmark excitations. Smart Struct. Syst. 17(2), 231–256 (2016)

    Article  Google Scholar 

  12. Leung, A.Y.T., Zhang, H., Cheng, C.C., Lee, Y.Y.: Particle swarm optimization of TMD by non-stationary base excitation during earthquake. Earthq. Eng. Struct. Dyn. 37(9), 1223–1246 (2008)

    Article  Google Scholar 

  13. Matta, E.: Performance of tuned mass dampers against near-field earthquakes. Struct Eng. Mech. 39(5), 621–642 (2011). https://doi.org/10.12989/sem.2011.39.5.621

    Article  Google Scholar 

  14. Di Matteo, A., Furtmüller, T., Adam, C., Pirrotta, A.: Optimal design of tuned liquid column dampers for seismic response control of base-isolated structures. Acta Mech. 229(2), 437–454 (2018). https://doi.org/10.1007/s00707-017-1980-7

    Article  MathSciNet  MATH  Google Scholar 

  15. De Angelis, M., Perno, S., Reggio, A.: Dynamic response and optimal design of structures with large mass ratio TMD. Earthq. Eng. Struct. Dyn. 41(1), 41–60 (2012). https://doi.org/10.1002/eqe.1117

    Article  Google Scholar 

  16. Smith, M.C.: Synthesis of mechanical networks: the inerter. In: 41st IEEE Conference on Decision and Control, Las Vegas, pp. 1657–1662 (2002)

  17. Siami, A., Karimi, H.R., Cigada, A., Zappa, E., Sabbioni, E.: Parameter optimization of an inerter-based isolator for passive vibration control of Michelangelo’s Rondanini Pietà. Mech. Syst. Signal Process. 98, 667–683 (2018). https://doi.org/10.1016/j.ymssp.2017.05.030

    Article  Google Scholar 

  18. Marian, L., Giaralis, A.: Optimal design of inerter devices combined with TMDs for vibration control of buildings exposed to stochastic seismic excitations. In: 11th International Conference on Structural Safety and Reliability, ICOSSAR 2013, New York, pp. 1025–1032 (2013)

  19. Marian, L., Giaralis, A.: The tuned mass-damper–inerter for harmonic vibrations suppression, attached mass reduction, and energy harvesting. Smart Struct. Syst. 19(6), 665–678 (2017). https://doi.org/10.12989/sss.2017.19.6.665

    Article  Google Scholar 

  20. Lazar, I.F., Neild, S.A., Wagg, D.J.: Using an inerter-based device for structural vibration suppression. Earthq. Eng. Struct. Dyn. 43(8), 1129–1147 (2014). https://doi.org/10.1002/eqe.2390

    Article  Google Scholar 

  21. Ikago, K., Saito, K., Inoue, N.: Seismic control of single-degree-of-freedom structure using tuned viscous mass damper. Earthq. Eng. Struct. Dyn. 41(3), 453–474 (2012). https://doi.org/10.1002/eqe.1138

    Article  Google Scholar 

  22. De Domenico, D., Ricciardi, G.: Improving the dynamic performance of base-isolated structures via tuned mass damper and inerter devices: a comparative study. Struct. Control Health Monit. 25(10), e2234 (2018). https://doi.org/10.1002/stc.2234

    Article  Google Scholar 

  23. De Domenico, D., Deastra, P., Ricciardi, G., Sims, N.D., Wagg, D.J.: Novel fluid inerter based tuned mass dampers for optimised structural control of base-isolated buildings. J. Frankl. Inst. 356, 7626–7649 (2018)

    Article  Google Scholar 

  24. Di Matteo, A., Masnata, C., Pirrotta, A.: Simplified analytical solution for the optimal design of tuned mass damper inerter for base isolated structures. Mech. Syst. Signal Process. 134, 106337 (2019). https://doi.org/10.1016/j.ymssp.2019.106337

    Article  Google Scholar 

  25. Masnata, C., Matteo, A.D., Adam, C., Pirrotta, A.J.M.R.C.: Smart structures through nontraditional design of tuned mass damper inerter for higher control of base isolated systems. Mech. Res. Commun. 105, 103513 (2020)

    Article  Google Scholar 

  26. Masri, S.F., Caffrey, J.P., Li, H.: Transient response of MDOF systems with inerters to nonstationary stochastic excitation. J. Appl. Mech. Trans. ASME (2017). https://doi.org/10.1115/1.4037551

    Article  Google Scholar 

  27. Giaralis, A., Taflanidis, A.A.: Optimal tuned mass-damper–inerter (TMDI) design for seismically excited MDOF structures with model uncertainties based on reliability criteria. Struct. Control Health Monit. 25(2), e2082 (2018). https://doi.org/10.1002/stc.2082

    Article  Google Scholar 

  28. Ziegler, F.: Mechanics of Solids and Fluids, Corrected reprint of the 2 edn. Springer, New York (1998)

    MATH  Google Scholar 

  29. Debnath, N., Deb, S.K., Dutta, A.: Frequency band-wise passive control of linear time invariant structural systems with \(H_{\infty }\) optimization. J. Sound Vib. 332(23), 6044–6062 (2013). https://doi.org/10.1016/j.jsv.2013.06.018

    Article  Google Scholar 

  30. Asami, T., Nishihara, O., Baz, A.M.: Analytical solutions to \(H_{\infty }\) and \(H_2\) optimization of dynamic vibration absorbers attached to damped linear systems. J. Vib. Acoust. 124(2), 284–295 (2002)

    Article  Google Scholar 

  31. Sadek, F., Mohraz, B., Taylor, A.W., Chung, R.M.: A method of estimating the parameters of tuned mass dampers for seismic applications. Earthq. Eng. Struct. Dyn. 26(6), 617–635 (1998)

    Article  Google Scholar 

  32. Kaveh, A., Mahdavi, V.R.: Colliding bodies optimization: a novel meta-heuristic method. Comput. Struct. 139, 18–27 (2014)

    Article  Google Scholar 

  33. Fahimi Farzam, M., Kaveh, A.: Optimum design of tuned mass dampers using colliding bodies optimization in frequency domain. Iran. J. Sci. Technol. Trans. Civ. Eng. (2019). https://doi.org/10.1007/s40996-019-00296-6

    Article  Google Scholar 

  34. Kaveh, A.: Applications of Metaheuristic Optimization Algorithms in Civil Engineering. Springer International Publishing, Switzerland, Cham (2017)

    Book  Google Scholar 

  35. Kaveh, A.: Advances in Metaheuristic Algorithms for Optimal Design of Structures, 2nd edn. Springer International Publishing, Switzerland, Cham (2017)

    Book  Google Scholar 

  36. Hadi, M.N.S., Arfiadi, Y.: Optimum design of absorber for MDOF structures. J. Struct. Eng. (ASCE) 124(11), 1272–1279 (1998)

    Article  Google Scholar 

  37. Bekdaş, G., Nigdeli, S.M.: Estimating optimum parameters of tuned mass dampers using harmony search. Eng. Struct. 33(9), 2716–2723 (2011). https://doi.org/10.1016/j.engstruct.2011.05.024

    Article  Google Scholar 

  38. Nigdeli, S.M., Bekdaş, G.: Optimum tuned mass damper design in frequency domain for structures. KSCE J. Civ. Eng. 21(3), 912–922 (2017). https://doi.org/10.1007/s12205-016-0829-2

    Article  Google Scholar 

  39. Khatibinia, M., Gholami, H., Kamgar, R.: Optimal design of tuned mass dampers subjected to continuous stationary critical excitation. Intl. J. Dyn. Control 6(3), 1094–1104 (2018). https://doi.org/10.1007/s40435-017-0386-7

    Article  MathSciNet  Google Scholar 

  40. Spencer Jr, B.F., Christenson, R.E., Dyke, S.J.: Next generation benchmark control problem for seismically excited buildings. In: Proceedings of the Second World Conference on Structural Control 1998, pp. 1135–1360. Kyoto

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaveh, A., Fahimi Farzam, M., Hojat Jalali, H. et al. Robust optimum design of a tuned mass damper inerter. Acta Mech 231, 3871–3896 (2020). https://doi.org/10.1007/s00707-020-02720-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02720-9

Navigation