1932

Abstract

The recently discovered topological quantum materials (TQMs) have electronic structures that can be characterized by certain topological invariants. In these novel materials, the unusual bulk and surface electrons not only give rise to many exotic physical phenomena but also foster potential new technological applications. To characterize the unusual electronic structures of these new materials, investigators have used angle-resolved photoemission spectroscopy (ARPES) as an effective experimental tool to directly visualize the unique bulk and surface electronic structures of TQMs. In this review, we first give a brief introduction of TQMs and ARPES, which is followed by examples of the application of ARPES to different TQMs ranging from topological insulators to Dirac and Weyl semimetals. We conclude with a brief perspective of the current development of ARPES and its potential application in the study of TQMs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070218-121852
2020-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/matsci/50/1/annurev-matsci-070218-121852.html?itemId=/content/journals/10.1146/annurev-matsci-070218-121852&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Kosterlitz JM, Thouless DJ. 1973. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C Solid State Phys. 6:1181–203
    [Google Scholar]
  2. 2. 
    Thouless DJ, Kohmoto M, Nightingale MP, den Nijs M 1982. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49:405–8
    [Google Scholar]
  3. 3. 
    Haldane FDM. 1983. Nonlinear field theory of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50:1153–56
    [Google Scholar]
  4. 4. 
    Haldane FDM. 1988. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly. Phys. Rev. Lett. 61:2015–18
    [Google Scholar]
  5. 5. 
    Kane CL, Mele EJ. 2005. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95:226801
    [Google Scholar]
  6. 6. 
    Bernevig BA, Hughes TL, Zhang S-C 2006. Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science 314:1757–61
    [Google Scholar]
  7. 7. 
    Konig M, Wiedmann S, Brune C, Roth A, Buhmann H et al. 2007. Quantum spin Hall insulator state in HgTe quantum wells. Science 318:766–70
    [Google Scholar]
  8. 8. 
    Hsieh D, Qian D, Wray L, Xia Y, Hor YS et al. 2008. A topological Dirac insulator in a quantum spin Hall phase. Nature 452:970–74
    [Google Scholar]
  9. 9. 
    Chen YL, Analytis JG, Chu JH, Liu ZK, Mo SK et al. 2009. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325:178–81
    [Google Scholar]
  10. 10. 
    Chen YL, Chu JH, Analytis JG, Liu ZK, Igarashi K et al. 2010. Massive Dirac fermion on the surface of a magnetically doped topological insulator. Science 329:659–62
    [Google Scholar]
  11. 11. 
    Hsieh D, Xia Y, Qian D, Wray L, Dil JH et al. 2009. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460:1101–5
    [Google Scholar]
  12. 12. 
    Liu ZK, Jiang J, Zhou B, Wang ZJ, Zhang Y et al. 2014. A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13:677–81
    [Google Scholar]
  13. 13. 
    Lv BQ, Xu N, Weng HM, Ma JZ, Richard P et al. 2015. Observation of Weyl nodes in TaAs. Nat. Phys. 11:724–27
    [Google Scholar]
  14. 14. 
    Qi XL, Zhang SC. 2011. Topological insulators and superconductors. Rev. Mod. Phys. 83:1057–110
    [Google Scholar]
  15. 15. 
    Hasan MZ, Kane CL. 2010. Colloquium: topological insulators. Rev. Mod. Phys. 82:3045–67
    [Google Scholar]
  16. 16. 
    Chiu CK, Teo JCY, Schnyder AP, Ryu S 2016. Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88:035005
    [Google Scholar]
  17. 17. 
    Berry MV. 1984. Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. A 392:45–57
    [Google Scholar]
  18. 18. 
    Fu L, Kane CL, Mele EJ 2007. Topological insulators in three dimensions. Phys. Rev. Lett. 98:106803
    [Google Scholar]
  19. 19. 
    Moore JE, Balents L. 2007. Topological invariants of time-reversal-invariant band structures. Phys. Rev. B 75:121306
    [Google Scholar]
  20. 20. 
    Qi X-L, Hughes TL, Zhang S-C 2008. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78:195424
    [Google Scholar]
  21. 21. 
    Fu LA. 2011. Topological crystalline insulators. Phys. Rev. Lett. 106:106802
    [Google Scholar]
  22. 22. 
    Slager RJ, Mesaros A, Juricic V, Zaanen J 2013. The space group classification of topological band-insulators. Nat. Phys. 9:98–102
    [Google Scholar]
  23. 23. 
    Tanaka Y, Ren Z, Sato T, Nakayama K, Souma S et al. 2012. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8:800–3
    [Google Scholar]
  24. 24. 
    Tanaka Y, Shoman T, Nakayama K, Souma S, Sato T et al. 2013. Two types of Dirac-cone surface states on the (111) surface of the topological crystalline insulator SnTe. Phys. Rev. B 88:235126
    [Google Scholar]
  25. 25. 
    Liang AJ, Jiang J, Wang MX, Sun Y, Kumar N et al. 2017. Observation of the topological surface state in the nonsymmorphic topological insulator KHgSb. Phys. Rev. B 96:165143
    [Google Scholar]
  26. 26. 
    Wieder BJ, Bradlyn B, Wang ZJ, Cano J, Kim Y et al. 2018. Wallpaper fermions and the nonsymmorphic Dirac insulator. Science 361:246–51
    [Google Scholar]
  27. 27. 
    Armitage NP, Mele EJ, Vishwanath A 2018. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90:015001
    [Google Scholar]
  28. 28. 
    Yang BJ, Nagaosa N. 2014. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5:4898
    [Google Scholar]
  29. 29. 
    Gao ZH, Hua M, Zhang HJ, Zhang X 2016. Classification of stable Dirac and Weyl semimetals with reflection and rotational symmetry. Phys. Rev. B 93:205109
    [Google Scholar]
  30. 30. 
    Liu ZK, Zhou B, Zhang Y, Wang ZJ, Weng HM et al. 2014. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343:864–67
    [Google Scholar]
  31. 31. 
    Bradlyn B, Cano J, Wang ZJ, Vergniory MG, Felser C et al. 2016. Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353:aaf5037
    [Google Scholar]
  32. 32. 
    Tang P, Zhou Q, Zhang S-C 2017. Multiple types of topological fermions in transition metal silicides. Phys. Rev. Lett. 119:206402
    [Google Scholar]
  33. 33. 
    Souma S, Kosaka K, Sato T, Komatsu M, Takayama A et al. 2011. Direct measurement of the out-of-plane spin texture in the Dirac-cone surface state of a topological insulator. Phys. Rev. Lett. 106:216803
    [Google Scholar]
  34. 34. 
    Okuda T, Miyamoto K, Kimura A, Namatame H, Taniguchi M 2015. A double VLEED spin detector for high-resolution three dimensional spin vectorial analysis of anisotropic Rashba spin splitting. J. Electron Spectrosc. Relat. Phenom. 201:23–29
    [Google Scholar]
  35. 35. 
    Okuda T, Miyamaoto K, Miyahara H, Kuroda K, Kimura A et al. 2011. Efficient spin resolved spectroscopy observation machine at Hiroshima Synchrotron Radiation Center. Rev. Sci. Instrum. 82:103302
    [Google Scholar]
  36. 36. 
    Okuda T, Takeichi Y, Maeda Y, Harasawa A, Matsuda I et al. 2008. A new spin-polarized photoemission spectrometer with very high efficiency and energy resolution. Rev. Sci. Instrum. 79:123117
    [Google Scholar]
  37. 37. 
    Hsieh D, Xia Y, Wray L, Qian D, Pal A et al. 2009. Observation of unconventional quantum spin textures in topological insulators. Science 323:919–22
    [Google Scholar]
  38. 38. 
    Souma S, Takayama A, Sugawara K, Sato T, Takahashi T 2010. Ultrahigh-resolution spin-resolved photoemission spectrometer with a mini Mott detector. Rev. Sci. Instrum. 81:095101
    [Google Scholar]
  39. 39. 
    Lebedev G, Tremsin A, Siegmund O, Chen Y, Shen ZA, Hussain Z 2007. Complete momentum and energy resolved TOF electron spectrometer for time-resolved photoemission spectroscopy. Nucl. Instrum. Methods Phys. Res. Sect. A 582:168–71
    [Google Scholar]
  40. 40. 
    Sobota JA, Yang SL, Leuenberger D, Kemper AF, Analytis JG et al. 2014. Distinguishing bulk and surface electron-phonon coupling in the topological insulator Bi2Se3 using time-resolved photoemission spectroscopy. Phys. Rev. Lett. 113:157401
    [Google Scholar]
  41. 41. 
    Arango YC, Huang L, Chen C, Avila J, Asensio MC et al. 2016. Quantum transport and nano angle-resolved photoemission spectroscopy on the topological surface states of single Sb2Te3 nanowires. Sci. Rep. 6:29493
    [Google Scholar]
  42. 42. 
    Chen C, Avila J, Wang S, Yang R, Zhang G, Asensio MC 2017. Electronic structure of graphene/hexagonal boron nitride heterostructure revealed by Nano-ARPES. J. Phys. Conf. Ser. 864:012005
    [Google Scholar]
  43. 43. 
    Krieg J, Chen C, Avila J, Zhang Z, Sigle W et al. 2016. Exploring the electronic structure and chemical homogeneity of individual Bi2Te3 nanowires by nano-angle-resolved photoemission spectroscopy. Nano Lett 16:4001–7
    [Google Scholar]
  44. 44. 
    Cheng C. 2018. Electronic structures of novel quantum materials studied by spatially angle-resolved photoemission spectroscopy PhD Thesis, Oxf. Univ Oxford, UK:
  45. 45. 
    Peng H, Schröter N, Yin J, Wang H, Chung T et al. 2017. Substrate doping effect and unusually large angle van Hove singularity evolution in twisted bi‐ and multilayer graphene. Adv. Mater. 29:201606741
    [Google Scholar]
  46. 46. 
    Jozwiak C, Sobota J, Gotlieb K, Kemper A, Rotundu C et al. 2016. Spin-polarized surface resonances accompanying topological surface state formation. Nat. Commun. 7:13143
    [Google Scholar]
  47. 47. 
    Liu C-C, Zhou J-J, Yao Y, Zhang F 2016. Weak topological insulators and composite Weyl semimetals: β−Bi4X4 (X = Br, I). Phys. Rev. Lett. 116:066801
    [Google Scholar]
  48. 48. 
    Ma JZ, Yi CJ, Lv BQ, Wang ZJ, Nie SM et al. 2017. Experimental evidence of hourglass fermion in the candidate nonsymmorphic topological insulator KHgSb. Sci. Adv. 3:e1602415
    [Google Scholar]
  49. 49. 
    Wan X, Turner AM, Vishwanath A, Savrasov SY 2011. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83:205101
    [Google Scholar]
  50. 50. 
    Lv BQ, Weng HM, Fu BB, Wang XP, Miao H et al. 2015. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5:031013
    [Google Scholar]
  51. 51. 
    Yang LX, Liu ZK, Sun Y, Peng H, Yang HF et al. 2015. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11:728–32
    [Google Scholar]
  52. 52. 
    Xu SY, Belopolski I, Sanchez DS, Zhang CL, Chang GQ et al. 2015. Experimental discovery of a topological Weyl semimetal state in TaP. Sci. Adv. 1:e1501092
    [Google Scholar]
  53. 53. 
    Belopolski I, Xu SY, Ishida Y, Pan XC, Yu P et al. 2016. Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate MoxW1−xTe2. Phys. Rev. B 94:085127
    [Google Scholar]
  54. 54. 
    Belopolski I, Xu SY, Sanchez DS, Chang GQ, Guo C et al. 2016. Criteria for directly detecting topological Fermi arcs in Weyl semimetals. Phys. Rev. Lett. 116:066802
    [Google Scholar]
  55. 55. 
    Bruno FY, Tamai A, Wu QS, Cucchi I, Barreteau C et al. 2016. Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94:121112
    [Google Scholar]
  56. 56. 
    Deng K, Wan GL, Deng P, Zhang KN, Ding SJ et al. 2016. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12:1105–10
    [Google Scholar]
  57. 57. 
    Ma JZ, He JB, Xu YF, Lv BQ, Chen D et al. 2018. Three-component fermions with surface Fermi arcs in tungsten carbide. Nat. Phys. 14:349–54
    [Google Scholar]
  58. 58. 
    Souma S, Wang ZW, Kotaka H, Sato T, Nakayama K et al. 2016. Direct observation of nonequivalent Fermi-arc states of opposite surfaces in the noncentrosymmetric Weyl semimetal NbP. Phys. Rev. B 93:161112
    [Google Scholar]
  59. 59. 
    Wang CL, Zhang Y, Huang JW, Nie SM, Liu GD et al. 2016. Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94:241119
    [Google Scholar]
  60. 60. 
    Wu Y, Mou DX, Jo NH, Sun KW, Huang LN et al. 2016. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 94:121113
    [Google Scholar]
  61. 61. 
    Xu SY, Alidoust N, Belopolski I, Yuan ZJ, Bian G et al. 2015. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11:748–54
    [Google Scholar]
  62. 62. 
    Xu SY, Belopolski I, Alidoust N, Neupane M, Bian G et al. 2015. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349:613–17
    [Google Scholar]
  63. 63. 
    Xu SY, Liu C, Kushwaha SK, Sankar R, Krizan JW et al. 2015. Observation of Fermi arc surface states in a topological metal. Science 347:294–98
    [Google Scholar]
  64. 64. 
    Liu D, Liang A, Liu E, Xu Q, Li Y et al. 2019. Magnetic Weyl semimetal phase in a Kagomé crystal. Science 365:1282–85
    [Google Scholar]
  65. 65. 
    Yang H, Liang A, Chen C, Zhang C, Schroeter N et al. 2018. Visualizing electronic structures of quantum materials by angle-resolved photoemission spectroscopy. Nat. Rev. Mater. 3:341–53
    [Google Scholar]
  66. 66. 
    Li YW, Xia Y, Ekahana SA, Kumar N, Jiang J et al. 2017. Topological origin of the type-II Dirac fermions in PtSe2. Phys. Rev. Mater. 1:074202
    [Google Scholar]
  67. 67. 
    Soluyanov AA, Gresch D, Wang ZJ, Wu QS, Troyer M et al. 2015. Type-II Weyl semimetals. Nature 527:495–98
    [Google Scholar]
  68. 68. 
    Jiang J, Liu ZK, Sun Y, Yang HF, Rajamathi CR et al. 2017. Signature of type-II Weyl semimetal phase in MoTe2. Nat. Commun. 8:13973
    [Google Scholar]
  69. 69. 
    Feng BJ, Chan YH, Feng Y, Liu RY, Chou MY et al. 2016. Spin texture in type-II Weyl semimetal WTe2. Phys. Rev. B 94:195134
    [Google Scholar]
  70. 70. 
    Lv BQ, Feng Z-L, Xu Q-N, Gao X, Ma J-Z et al. 2017. Observation of three-component fermions in the topological semimetal molybdenum phosphide. Nature 546:627–31
    [Google Scholar]
  71. 71. 
    Takane D, Wang Z, Souma S, Nakayama K, Nakamura T et al. 2019. Observation of chiral fermions with a large topological charge and associated Fermi-arc surface states in CoSi. Phys. Rev. Lett. 122:076402
    [Google Scholar]
  72. 72. 
    Sanchez DS, Belopolski I, Cochran TA, Xu XT, Yin JX et al. 2019. Topological chiral crystals with helicoid-arc quantum states. Nature 567:500–5
    [Google Scholar]
  73. 73. 
    Schröter NB, Pei D, Vergniory MG, Sun Y, Manna K et al. 2019. Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 15:759–65
    [Google Scholar]
  74. 74. 
    Bian G, Chang TR, Sankar R, Xu SY, Zheng H et al. 2016. Topological nodal-line fermions in spin-orbit metal PbTaSe2. Nat. Commun. 7:10556
    [Google Scholar]
  75. 75. 
    Burkov AA, Hook MD, Balents L 2011. Nodal-chain metals. Topological nodal semimetals. Phys. Rev. B 84:4319–22
    [Google Scholar]
  76. 76. 
    Bzdušek T, Wu QS, Rüegg A, Sigrist M, Soluyanov AA 2016. Nodal-chain metals. Nature 538:75–78
    [Google Scholar]
  77. 77. 
    Fang C, Chen YG, Kee HY, Fu L 2015. Topological nodal line semimetals with and without spin-orbital coupling. Phys. Rev. B 92:081201
    [Google Scholar]
  78. 78. 
    Fang C, Weng HM, Dai X, Fang Z 2016. Topological nodal line semimetals. Chin. Phys. B 25:117106
    [Google Scholar]
  79. 79. 
    Yang SY, Yang H, Derunova E, Parkin SSP, Yan BH, Ali MN 2018. Symmetry demanded topological nodal-line materials. Adv. Phys. X 3:1414631
    [Google Scholar]
  80. 80. 
    Wu Y, Wang L-L, Mun E, Johnson DD, Mou D et al. 2016. Dirac node arcs in PtSn4. Nat. Phys. 12:667–71
    [Google Scholar]
  81. 81. 
    Schoop LM, Ali MN, Straßer C, Topp A, Varykhalov A et al. 2016. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7:11696
    [Google Scholar]
  82. 82. 
    Chen C, Xu X, Jiang J, Wu S-C, Qi Y et al. 2017. Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals M SiS (M = Hf, Zr). Phys. Rev. B 95:125126
    [Google Scholar]
  83. 83. 
    Ekahana SA, Wu S-C, Jiang J, Okawa K, Prabhakaran D et al. 2017. Observation of nodal line in non-symmorphic topological semimetal InBi. New J. Phys. 19:065007
    [Google Scholar]
  84. 84. 
    Zhang K, Yan M, Zhang H, Huang H, Arita M et al. 2017. Experimental evidence of type-II Dirac fermions in PtSe2. Phys. Rev. B 96:125102
    [Google Scholar]
  85. 85. 
    Ito S, Feng B, Arita M, Takayama A, Liu RY et al. 2016. Proving nontrivial topology of pure bismuth by quantum confinement. Phys. Rev. Lett. 117:236402
    [Google Scholar]
  86. 86. 
    Liu Z, Liu C-X, Wu Y-S, Duan W-H, Liu F, Wu J 2011. Stable nontrivial Z2 topology in ultrathin Bi (111) films: a first-principles study. Phys. Rev. Lett. 107:136805
    [Google Scholar]
  87. 87. 
    Shen S-Q. 2012. Topological Insulators: Dirac Equation in Condensed Matters Berlin: Springer
  88. 88. 
    Lv B, Muff S, Qian T, Song Z, Nie S et al. 2015. Observation of Fermi-arc spin texture in TaAs. Phys. Rev. Lett. 115:217601
    [Google Scholar]
  89. 89. 
    Liu Z, Yang L, Sun Y, Zhang T, Peng H et al. 2016. Evolution of the Fermi surface of Weyl semimetals in the transition metal pnictide family. Nat. Mater. 15:27–31
    [Google Scholar]
  90. 90. 
    Zobel M, Neder R, Kimber S 2015. Universal solvent restructuring induced by colloidal nanoparticles. Science 347:292–94
    [Google Scholar]
  91. 91. 
    Mandal P, Springholz G, Volobuev V, Caha O, Varyhalov A et al. 2017. Topological quantum phase transition from mirror to time reversal symmetry protected topological insulator. Nat. Commun. 8:968
    [Google Scholar]
  92. 92. 
    Hatch RC, Bianchi M, Guan D, Bao S, Mi J et al. 2011. Stability of the Bi2Se3(111) topological state: electron-phonon and electron-defect scattering. Phys. Rev. B 83:241303
    [Google Scholar]
  93. 93. 
    Pan ZH, Fedorov AV, Gardner D, Lee YS, Chu S, Valla T 2012. Measurement of an exceptionally weak electron-phonon coupling on the surface of the topological insulator Bi2Se3 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 108:187001
    [Google Scholar]
  94. 94. 
    Scharf B, Matos-Abiague A, Zutic I, Fabian J 2015. Probing topological transitions in HgTe/CdTe quantum wells by magneto-optical measurements. Phys. Rev. B 91:235433
    [Google Scholar]
  95. 95. 
    Zhang Y, He K, Chang C-Z, Song C-L, Wang L-L et al. 2010. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 6:584–88
    [Google Scholar]
  96. 96. 
    Wu L, Brahlek M, Valdés Aguilar R, Stier A, Morris CM et al. 2013. A sudden collapse in the transport lifetime across the topological phase transition in (Bi1−xInx)2Se3. Nat. Phys. 9:410–14
    [Google Scholar]
  97. 97. 
    Cucchi I, Gutierrez-Lezama I, Cappelli E, Walker SM, Bruno FY et al. 2019. Microfocus laser-angle-resolved photoemission on encapsulated mono-, bi-, and few-layer 1T′-WTe2. Nano Lett 19:554–60
    [Google Scholar]
  98. 98. 
    Tang SJ, Zhang CF, Wong D, Pedramrazi Z, Tsai HZ et al. 2017. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. 13:683–87
    [Google Scholar]
  99. 99. 
    Xu SY, Xia Y, Wray LA, Jia S, Meier F et al. 2011. Topological phase transition and texture inversion in a tunable topological insulator. Science 332:560–64
    [Google Scholar]
  100. 100. 
    Brahlek M, Bansal N, Koirala N, Xu SY, Neupane M et al. 2012. Topological-metal to band-insulator transition in (Bi1−xInx)2Se3 thin films. Phys. Rev. Lett. 109:186403
    [Google Scholar]
  101. 101. 
    Dziawa P, Kowalski BJ, Dybko K, Buczko R, Szczerbakow A et al. 2012. Topological crystalline insulator states in Pb1−xSnxSe. Nat. Mater. 11:1023–27
    [Google Scholar]
  102. 102. 
    Yan CH, Liu JW, Zang YY, Wang JF, Wang ZY et al. 2014. Experimental observation of Dirac-like surface states and topological phase transition in Pb1−xSnxTe(111) films. Phys. Rev. Lett. 112:186801
    [Google Scholar]
  103. 103. 
    Xu SY, Liu C, Alidoust N, Neupane M, Qian D et al. 2012. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat. Commun. 3:1192
    [Google Scholar]
  104. 104. 
    Yang H, Yang L, Liu Z, Sun Y, Chen C et al. 2019. Topological Lifshitz transitions and Fermi arc manipulation in Weyl semimetal NbAs. Nat. Commun. 10:3478
    [Google Scholar]
  105. 105. 
    Zhang T, Jiang Y, Song Z, Huang H, He Y et al. 2019. Catalogue of topological electronic materials. Nature 566:475–79
    [Google Scholar]
  106. 106. 
    Vergniory M, Elcoro L, Felser C, Regnault N, Bernevig BA, Wang Z 2019. A complete catalogue of high-quality topological materials. Nature 566:480–85
    [Google Scholar]
  107. 107. 
    Tang F, Po HC, Vishwanath A, Wan X 2019. Comprehensive search for topological materials using symmetry indicators. Nature 566:486–89
    [Google Scholar]
  108. 108. 
    Li J, Li Y, Du S, Wang Z, Gu B-L et al. 2019. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5:eaaw5685
    [Google Scholar]
  109. 109. 
    Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J 2019. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122:206401
    [Google Scholar]
  110. 110. 
    Hao Y-J, Liu P, Feng Y, Ma X-M, Schwier EF et al. 2019. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 9:041038
    [Google Scholar]
  111. 111. 
    Chen Y, Xu L, Li J, Li Y, Zhang C et al. 2019. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 9:041040
    [Google Scholar]
  112. 112. 
    Swatek P, Wu Y, Wang L-L, Lee K, Schrunk B et al. 2019. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. arXiv:1907.09596 [cond-mat.mtrl-sci]
  113. 113. 
    Chen B, Fei F, Zhang D, Zhang B, Liu W et al. 2019. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes. Nat. Commun. 10:4469
    [Google Scholar]
  114. 114. 
    Jiang J, Li S, Zhang T, Sun Z, Chen F et al. 2013. Observation of possible topological in-gap surface states in the Kondo insulator SmB6 by photoemission. Nat. Commun. 4:3010
    [Google Scholar]
  115. 115. 
    Gooth J, Bradlyn B, Honnali S, Schindler C, Kumar N et al. 2019. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature 575:315–19
    [Google Scholar]
  116. 116. 
    Shannon N, Joynt R. 2000. The spectral, structural and transport properties of the pseudogap system (TaSe4)2I. Solid State Commun 115:411–15
    [Google Scholar]
  117. 117. 
    Borisenko S. 2012. “One-cubed” ARPES User Facility at BESSY II. Synchrotron Radiat. News 25:6–11
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070218-121852
Loading
/content/journals/10.1146/annurev-matsci-070218-121852
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error