Skip to main content
Log in

Nickel Nanoparticles by Mechanical Synthesis in the NiO–Mg System

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Ni nanopowder was synthesized from NiO through mechanically induced magnesiothermic NiO–Mg reaction that can also be regarded as a kind of progressive synthesis, or Mechanically induced Self-sustaining Reaction (MSR). The obtained powder was characterized by XRD, FESEM, and TEM. After 8 min of milling, the mixture ignited in the mill vial to yield Ni and MgO. The latter was removed by leaching with 18% HCl. The mean crystallite size of resultant Ni was found to have a value of 45–50 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Chaturvedi, S., Dave, P.N., and Shah, N.K., Applications of nano-catalysts in new era, J. Saudi Chem. Soc., 2012, vol. 16, no. 3, pp. 307–325. https://doi.org/10.1016/j.jscs.2011.01.015

    Article  CAS  Google Scholar 

  2. Mary, A.R., Sandeep, C.S., Narayanan, T.N., Philip, R., Moloney, P., Ajayan, P.M., and Anantharaman, M.R., Nonlinear and magneto-optical transmission studies on magnetic nanofluids of non-interacting metallic nickel nanoparticles, Nanotechnology, 2011, vol. 22, no. 37, 375702. https://doi.org/10.1088/0957-4484/22/37/375702

    Article  CAS  Google Scholar 

  3. Pascu, O., Caicedo, J.M., Fontcuberta, J., Herranz, G., and Roig, A., Magneto-optical characterization of colloidal dispersions: Application to nickel nanoparticles, Langmuir, 2010, vol. 26, no. 15, pp. 12548–12552. https://doi.org/10.1021/la1011617

    Article  CAS  Google Scholar 

  4. Xu, C., Hu, Y., Rong, J., Jiang, SP., and Liu, Y., Ni hollow spheres as catalysts for methanol and ethanol electrooxidation, Electrochem. Commun., 2007, vol. 9, no. 8, pp. 2009–2012. https://doi.org/10.1016/j.elecom.2007.05.028

    Article  CAS  Google Scholar 

  5. Metin, O., Mazumder, V., Ozkar, S., and Sun, S., Monodisperse nickel nanoparticles and their catalysis in hydrolytic dehydrogenation of ammonia borane, J. Am. Chem. Soc., 2010, vol. 132, no. 5, pp. 1468–1469. https://doi.org/10.1021/ja909243z

    Article  CAS  Google Scholar 

  6. Aguilhon, J., Boissière, C., Durupthy, O., Thomazeau, C., and Sanchez, C., Nickel nanoparticles with controlled morphologies: Application in selective hydrogenation catalysis, Stud. Surf. Sci. Catal., 2010, vol. 175, pp. 521–524. https://doi.org/10.1016/S0167-2991(10)75099-0

    Article  CAS  Google Scholar 

  7. Mai, Y.J., Tu, J.P., Gu, C.D., and Wang, X.L., Graphene anchored with nickel nanoparticles as a high-performance anode material for lithium ion batteries, J. Power Sources, 2012, vol. 209, pp. 1–6. https://doi.org/10.1016/j.jpowsour.2012.02.073

    Article  CAS  Google Scholar 

  8. Dung, N.Q., Patil. D., Jung, H., Kim, J., and Kim, D., NiO-decorated single-walled carbon nanotubes for high-performance non-enzymatic glucose sensing, Sens. Actuators B: Chem., 2013, vol. 183, pp. 381–387. https://doi.org/10.1016/j.snb.2013.04.018

    Article  CAS  Google Scholar 

  9. Hernández, P.T., Kuznetsov, M.V., Morozov, Y.G., and Parkin, I.P., Application of levitation-jet synthesized nickel-based nanoparticles for gas sensing, Mater. Sci. Eng. B, 2019, vol. 244, pp. 81–92. https://doi.org/10.1016/j.mseb.2019.05.003

    Article  CAS  Google Scholar 

  10. Neiva, E.G., Oliveira, M.M., Marcolino Jr, L.H., and Zarbin, A.J., Nickel nanoparticles with hcp structure: Preparation, deposition as thin films and application as electrochemical sensor, J. Colloid Interf. Sci., 2016, vol. 468, pp. 34–41. https://doi.org/10.1016/j.jcis.2016.01.036

    Article  CAS  Google Scholar 

  11. Tehrani, R.M. and Ab Ghani, S., The nanocrystalline nickel with catalytic properties for methanol oxidation in alkaline medium, Fuel Cells, 2009, vol. 9, no. 5, pp. 579–587. https://doi.org/10.1002/fuce.200800122

    Article  CAS  Google Scholar 

  12. Ewing, S.J., Lan, R., Xu, X.X., and Tao, S.W., Synthesis of dendritic nano-sized nickel for use as anode material in an alkaline membrane fuel cell, Fuel Cells, 2010, vol. 10, no. 1, pp. 72–76. https://doi.org/10.1002/fuce.200900102

    Article  CAS  Google Scholar 

  13. Sada, T., Izawa, K., Fujikawa, N., and Fujioka, Y., Mechanism of pre-breakdown process in Ni–BaTiO3 multilayer ceramic capacitors, Jpn. J. Appl. Phys., 2018, vol. 57, no. 11S. https://doi.org/10.7567/JJAP.57.11UC02

  14. Wu, Z.G., Munoz, M., and Montero, O., The synthesis of nickel nanoparticles by hydrazine reduction, Adv. Powder Technol., 2010, vol. 21, no. 2, pp. 165–168. https://doi.org/10.1016/j.apt.2009.10.012

    Article  CAS  Google Scholar 

  15. Zhang, H.T., Wu, G., Chen, X.H., and Qiu, X.G., Synthesis and magnetic properties of nickel nanocrystals, Mater. Res. Bull., 2006, vol. 4, no. 3, pp. 495–501. https://doi.org/10.1016/j.materresbull.2005.09.019

    Article  CAS  Google Scholar 

  16. Li, D. and Komarneni, S., Microwave-assisted polyol process for synthesis of Ni nanoparticles, J. Am. Ceram. Soc., 2006, vol. 89, no. 5, pp. 1510–1517. https://doi.org/10.1111/j.1551-2916.2006.00925.x

    Article  CAS  Google Scholar 

  17. Neiva, E.G., Bergamini, M.F., Oliveira, M.M., Marcolino Jr, L.H., and Zarbin, A.J., PVP-capped nickel nanoparticles: Synthesis, characterization and utilization as a glycerol electrosensor, Sens. Actuators B: Chem., 2014, vol. 196, pp. 574–581. https://doi.org/10.1016/j.snb.2014.02.041

    Article  CAS  Google Scholar 

  18. Liu, Y., Li, X., Li, Y., Chen, J., Zhao, W., and Bai, F., The formation mechanism and morphology of the nickel particles by the ultrasound-aided spark discharge in different liquid media, Adv. Powder Technol., 2016, vol. 27, no. 6, pp. 2399–2408. https://doi.org/10.1016/j.apt.2016.08.016

    Article  CAS  Google Scholar 

  19. Hou, Y., Kondoh, H., Ohta, T., and Gao, S., Size-controlled synthesis of nickel nanoparticles, Appl. Surf. Sci., 2005, vol. 241, nos. 1–2, pp. 218–222. https://doi.org/10.1016/j.apsusc.2004.09.045

    Article  CAS  Google Scholar 

  20. Wang, D.P., Sun, D.B., Yu, H.Y., and Meng, H.M., Morphology controllable synthesis of nickel nanopowders by chemical reduction process, J. Cryst. Growth, 2008, vol. 310, no. 6, pp. 1195–1201. https://doi.org/10.1016/j.jcrysgro.2007.12.052

    Article  CAS  Google Scholar 

  21. Bai, L., Fan, J., Hu, P., Yuan, F., Li, J., and Tang, Q., RF plasma synthesis of nickel nanopowders via hydrogen reduction of nickel hydroxide/carbonate, J. Alloys Comp., 2009, vol. 481, nos. 1–2, pp. 563–567. https://doi.org/10.1016/j.jallcom.2009.03.054

    Article  CAS  Google Scholar 

  22. Davoodi, D., Miri, R., Emami, A.H., Tayebi, M., and Salahshour, S., The effect of NiO catalyst on reduction, synthesis and binder content of TiC–Ni nanocomposite, Int. J. Refract. Met. Hard Mater., 2019, vol. 88. https://doi.org/10.1016/j.ijrmhm.2019.105175

  23. Davoodi, D., Tayebi, M., Miri, R., Emami, A.H., and Salahshour, S., An investigation of the reduction mechanisms and magnesiothermic reactions in ZrC–Ni nanocomposite synthesis, Mater. Chem. Phys., vol. 222, pp. 351–360. https://doi.org/10.1016/j.matchemphys.2018.10.014

  24. Davoodi, D., Emami, A.H., Tayebi, M., and Hosseini, S.K., Rapid mechanochemical synthesis of nickel–vanadium carbide nanocomposite powder by magnesiothermic reaction, Ceram. Int., vol. 44, no. 5, pp. 5411–5419. https://doi.org/10.1016/j.ceramint.2017.12.170

  25. Sharifi, H., Tayebi, M., and Honarmand, M., Production of a nanocrystalline composite of Al–4% Cu/SiC by mechanical milling method, Mater. Res. Express, vol. 3, no. 10. https://doi.org/10.1088/2053-1591/3/10/105050

  26. Wu, Z.G., Munoz, M., and Montero, O., The synthesis of nickel nanoparticles by hydrazine reduction, Adv. Powder Technol., 2010, vol. 21, no. 2, pp. 165–168. https://doi.org/10.1016/j.apt.2009.10.012

    Article  CAS  Google Scholar 

  27. Baláž, P., Mechanochemistry in minerals engineering, in Mechanochemistry in Nanoscience and Minerals Engineering, Berlin–Heidelberg: Springer, 2008, pp. 257–296. https://doi.org/10.1007/978-3-540-74855-7

    Google Scholar 

  28. Sharifi, H., Faradonbeh, S.R., and Tayebi, M., Production and characterization of cobalt/vanadium boride nanocomposite powder by mechanochemical method, Mater. Chem. Phys., 2017, vol. 202, pp. 251–257. https://doi.org/10.1016/j.matchemphys.2017.09.015

    Article  CAS  Google Scholar 

  29. Suryanarayana, C., Mechanical alloying and milling. Prog. Mater. Sci., 2001, vol. 46, nos. 1–2, pp. 1–184. https://doi.org/10.1016/S0079-6425(99)00010-9

    Article  CAS  Google Scholar 

  30. Takacs, L., Self-sustaining reactions induced by ball milling, Prog. Mater. Sci., 2002, vol. 47, no. 4, pp. 355–414. https://doi.org/10.1016/S0079-6425(01)00002-0

    Article  CAS  Google Scholar 

  31. Moore, J.J. and Feng, H.J., Combustion synthesis of advanced materials: I. Reaction parameters, Prog. Mater. Sci., 1995, vol. 39, nos. 4–5, pp. 243–273. https://doi.org/10.1016/0079-6425(94)00011-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Sharifi.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharibi, M., Sharifi, H., Nilforoushan, M.R. et al. Nickel Nanoparticles by Mechanical Synthesis in the NiO–Mg System. Int. J Self-Propag. High-Temp. Synth. 29, 108–114 (2020). https://doi.org/10.3103/S1061386220020065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386220020065

Keywords:

Navigation