Skip to main content
Log in

Mechanoactivated SHS in the Nb–Si System: Modeling and Experiment

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Mechanoactivated SHS in the Nb–Si system was explored experimentally and by mathematical modeling for two limiting combustion modes: thermal explosion (volume reaction) and conventional SHS (frontal combustion). Our mathematical model may turn useful for optimizing process parameters for synthesis of NbSi2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Reddy, B.S.B., Das, K., and Das, S., A review on the synthesis of in situ aluminum based composites by thermal, mechanical, and mechanical-thermal activation of chemical reactions, J. Mater Sci., 2007, vol. 42, no. 22, pp. 9366–9378. https://doi.org/10.1007/s10853-007-1827-z

    Article  CAS  Google Scholar 

  2. Bernard, F. and Gaffet, E., Mechanical alloying in SHS research, Int. J. Self-Propag. High-Temp Synth., 1999, vol. 10, no. 2, pp. 109–132.

    Google Scholar 

  3. Anselmi-Tamburini, U., Maglia, F., Doppiu, S., and Monagheddu, M., Ignition mechanism of mechanically activated Me–Si (Me = Ti, Nb, Mo) mixtures, J. Mater. Res., 2004, vol. 5, no. 8, pp. 1558–1566. https://doi.org/10.1557/JMR2004.0209

    Article  Google Scholar 

  4. Yazdani, Z., Karimazedh, F., and Abbasi, M.H., Formation mechanism of NbSi2–Al2O3 nanocomposite subject to mechanical alloying, Adv. Powder Tech., 2014, vol. 25, no. 4, pp. 1357–1361. https://doi.org/10.1016/j.apt.2014.03.019

    Article  CAS  Google Scholar 

  5. Wang, X.L., Wang, G.F., and Zhang, K.F., Effect of mechanical alloying on microstructure and mechanical properties of hot-pressed Nb–16Si alloys, Mater. Sci. Eng. A, 2010, vol. 527, no. 14, pp. 3253–3258. https://doi.org/10.1016/j.msea.2010.02.031

    Article  CAS  Google Scholar 

  6. Tiozzo, C., Bisio, C., Carniato, F., Gallo, A., Scott, S.L., Psaro, R., and Guidotti, M., Niobium–silica catalysts for the selective epoxidation of cyclic alkenes: The generation of the active site by grafting niobocene dichloride, Phys. Chem. Chem. Phys., 2013, vol. 15, no. 49, pp. 13 354–13 362. https://doi.org/10.1039/C3CP51570B

    Article  Google Scholar 

  7. Yung, I.C., Yu, X.G., Li, C.C., Yi, E.K., and Bo, W.L., Mechanical properties, bonding characteristics, and oxidation behaviors of Nb–Si–N coatings, Surf. Coat. Technol., 2018, vol. 350, pp. 831–840. https://doi.org/10.1016/j.surfcoat.2018.04.042

    Article  CAS  Google Scholar 

  8. Guo, Y., G., Jia, L., Zhang, H., Zhang, F., and Zhang, H., Enhancing the oxidation resistance of Nb–Si based alloys by yttrium addition, Intermetallics, 2018, vol. 101, pp. 165–172. https://doi.org/10.1016/j.intermet.2018.08.004

    Article  CAS  Google Scholar 

  9. Pollock, T.M., Alloy design for aircraft engines, Nature Mater., 2016, vol. 15 pp. 809–815. https://doi.org/10.1038/nmat4709

    Article  CAS  Google Scholar 

  10. Shkoda, O.A. and Lapshin, O.V., Mechanical activation and thermal treatment of low-energy Nb–2Si powder blend: I. The experiment, Russ. Phys. J., 2019, vol. 61, no. 11, pp. 1951–1955. https://doi.org/10.1007/s11182-019-01623-0

    Article  CAS  Google Scholar 

  11. Smolyakov, V.K., Lapshin, O.V., and Boldyrev, V.V., Mathematical simulation of mechanochemical synthesis in a macroscopic approximation, Theor. Found. Chem. Eng., 2008, vol. 42, no. 1, pp. 54–59. https://doi.org/10.1134/S0040579508010077

    Article  CAS  Google Scholar 

  12. Smolyakov, V.K, Lapshin, O.V., and Boldyrev, V.V., Dynamics of mechanochemical synthesis in heterogeneous systems, Theor. Found. Chem. Eng., 2008, vol. 42, no. 2, pp. 187–196. https://doi.org/10.1134/S0040579508020115

    Article  CAS  Google Scholar 

  13. Smolyakov, V.K., Lapshin, O.V., and Boldyrev, V.V., Mechanochemical synthesis of nanosize products in heterogeneous systems: Macroscopic kinetics, Int. J. Self-Propag. High-Temp Synth., 2008, vol. 17, no. 1, pp. 20–29. https://doi.org/10.3103/S1061386208010020

    Article  CAS  Google Scholar 

  14. Lapshin, O.V. and Shkoda, O.A., Mechanical activation and thermal treatment of low-energy Nb–2Si powder blend: II. Mathematical model, Russ. Phys. J., 2019, vol. 61, no. 12, pp. 2209–2217. https://doi.org/10.1007/s11182-019-01657-4

    Article  CAS  Google Scholar 

  15. Lapshin, O.V. and Ryabkova A.I., Mathematical model of the formation of mechanocomposite particles during the mechanical treatment of a powder mixture, IOP Conf. Series: J. Phys., 2019, vol. 1214. https://doi.org/10.1088/1742-6596/1214/1/012013

  16. Lapshin, O.V. and Smolyakov, V.K., Mathemathical simulation of the combustion of a mechanically activated 3Ni + Al mixture, Combust. Explos. Shock Waves, 2003, vol. 55, no. 1, pp. 107–113.https://doi.org/10.15372/FGV20190112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. A. Shkoda or O. V. Lapshin.

Additional information

Translated by Yu. Scheck

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkoda, O.A., Lapshin, O.V. Mechanoactivated SHS in the Nb–Si System: Modeling and Experiment. Int. J Self-Propag. High-Temp. Synth. 29, 96–99 (2020). https://doi.org/10.3103/S1061386220020144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386220020144

Keywords:

Navigation