Skip to main content
Log in

Combustion Synthesis of C and SiC Nanoparticles from Na2CO3–Si Mixtures: Characterization and Electrochemical Performance

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

This article presents a β-SiC nanopowder synthesis process based on the combustion of a Na2CO3kSi solid system (k indicates the moles of Si) in an Ar atmosphere. The authors of this study monitored the combustion parameters (temperature and wave velocity), reaction phases, and morphological changes as the Si/Na2CO3 molar ratio was increased. The combustion reaction produced temperatures of 1235–1550°C and resulted in the formation of either carbon nanosheets (k = 1) or SiC nanopowder (k = 2–5) and sodium metasilicate (Na2SiO3) as by-product. The SiC nanopowder was tested for its suitability as an anode material for high-performance rechargeable Li-ion batteries. As a result, good battery performance was obtained, with 407 mAh g–1 at the 5th cycle and 400 mAh g–1 at the 60th cycle, at a capacity retention of approximately 98%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bouchat, V., Feron, O., Gallez, B., Masereel, B., Michiels, C., Borght, T.V., Rossi, F., and Lucas, S., Carbon nanoparticles synthesized by sputtering and gas condensation inside a nanocluster source of fixed dimension, Surf. Coat. Technol. 2011, vol. 205, no. S2, pp. 577–S581. https://doi.org/10.1016/j.surfcoat.2011.03.055

    Article  CAS  Google Scholar 

  2. Swihart, M. T., Vapor-phase synthesis of nanoparticles, Curr. Opin. Colloid Interf. Sci., 2003, vol. 3, pp. 127–133. https://doi.org/10.1016/S1359-029403.00007-4

    Article  Google Scholar 

  3. Variava, M.F., Church, T.L., Husin, A., Harris, A. T., and Minett, A.I., Simple gas-solid route to functionalize ordered carbon, ACS Appl. Mater. Interf., 2014, vol. 6, no. 4, pp. 2910–2916. https://doi.org/10.1021/am405484g

  4. Magrez, A., Seo, J.W., Smajda, R., Mionić, M., and Forró, L., Catalytic CVD synthesis of carbon nanotubes: Towards high yield and low-temperature growth, Materials, 2010, vol. 3, no. 11, pp. 4871–4891. https://doi.org/10.3390/ma3114871

    Article  CAS  Google Scholar 

  5. Elliott, J.M., Shibuta, Y., Amara, H., Bichara, C., and Neyts, E.C., Atomistic modeling of CVD synthesis of carbon nanotubes and graphene, Nanoscale, 2013, vol. 5, pp. 6662–6676. https://doi.org/10.1039/C3NR01925J

    Article  CAS  Google Scholar 

  6. Liu, R., Liu, M., and Chang, J., Large-scale synthesis of monodisperse SiC nanoparticles with adjustable size, stoichiometric ratio and properties by fluidized bed chemical vapor deposition, J. Nanopart. Res., 2017, vol. 19, p. 26. https://doi.org/10.1007/s11051-016-3737-y

    Article  CAS  Google Scholar 

  7. Tong, L. and Reddy, R. G., Thermal plasma synthesis of SiC nano-powders/nano-fibers, Mater. Res. Bull., 2006, vol. 41, pp. 2303–2310. https://doi.org/10.1016/j.materresbull.2006.04.021

    Article  CAS  Google Scholar 

  8. Xing, T., Sunarso, J., Yang, W., Yin, Y., Glushenkov, A.M., Li, L.H., Howlett, P.C., and Chen, Y., Ball milling: A green mechanochemical approach for synthesis of nitrogen doped carbon nanoparticles, Nanoscale, 2013, vol. 5, pp. 7970–7976. https://doi.org/10.1039/C3NR02328A

    Article  CAS  Google Scholar 

  9. Xu, C., De, S., Balu, A.M., Ojeda, M., and Luque, R., Mechanochemical synthesis of advanced nanomaterials for catalytic application, Chem. Commun., 2015, vol. 51, pp. 6698–6713. https://doi.org/10.1039/C4CC09876E

    Article  CAS  Google Scholar 

  10. Zhang, G., Wei, G., Zheng, K., Li, L., Xu, D., Wang, D., Xue, Y., and Su, W., The synthesis of beta-SiC nanoparticles by high-energy mechanical ball milling and their photoluminescence properties, J. Nanosci. Nanotechnol., 2010, vol. 10, pp. 1951–1955. https://doi.org/10.1166/jnn.2010.2062

    Article  Google Scholar 

  11. Do, J.L. and Friščić, T., Mechanochemistry: A force of synthesis, ACS Cent. Sci., 2017, vol. 3, no. 1, pp. 13−19. https://doi.org/10.1021/acscentsci.6b00277

    Article  CAS  Google Scholar 

  12. Huang, Z., Cui, F., Xue, J., Zuo, J. Chen, J., and Xia, C., Synthesis and structural characterization of silica dispersed copper nanomaterials with unusual thermal stability prepared by precipitation-gel method, J. Phys. Chem., 2010, vol. 114, no. 39, pp. 16104–16113. https://doi.org/10.1021/jp101136x

    Article  CAS  Google Scholar 

  13. Liu, Y., Chi, W., Zhao, D., Liu, H., and Deng, Y., Molecular-cage method: An improvement of the precipitation method in synthesizing nanoparticles, Ind. Eng. Chem. Res., 2016, vol. 55, no. 30, pp. 8403–8408. https://doi.org/10.1021/acs.iecr.6b01714

    Article  CAS  Google Scholar 

  14. Lin, S., Lin, K., Lu, K. D., and Liu, Z., Preparation of uniform magnetic iron oxide nanoparticles by co-precipitation in a helical module microchannel reactor, J. Environ. Chem. Eng., 2017, vol. 5, no. 1, pp. 303–309. https://doi.org/10.1016/j.jece.2016.12.011

    Article  CAS  Google Scholar 

  15. Danks, A.E., Hal, S.R., and Schnepp, Z., The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis, Mater. Horiz., 2016, vol. 3, no. 2, pp. 91–112. https://doi.org/10.1039/C5MH00260E

    Article  CAS  Google Scholar 

  16. Tseng, T.K., Lin, Y.S., Chen, Y.J., and Chu, H., A review of photocatalysts prepared by sol-gel method for VOCs removal, Int. J. Mol. Sci., 2010, vol. 11, no. 6, pp. 2336–2361. https://doi.org/10.3390/ijms11062336

    Article  CAS  Google Scholar 

  17. Kumar, A., Yadav, N., Bhatt, M., Mishra, N.K., Chaudhary, P., and Singh, R., Sol-gel derived nanomaterials and their applications: A Review, Res.J. Chem. Sci., 2015, vol. 5, no. 12, pp. 98–105.

    Google Scholar 

  18. Aruna, S.T. and Mukasyan, A.S., Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, pp. 44–50. https://doi.org/10.1016/j.cossms.2008.12.002

    Article  CAS  Google Scholar 

  19. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, no. 23, pp. 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279

    Article  CAS  Google Scholar 

  20. Nersisyan, H.H., Lee, J.H., Kim, H.Y., Ryu, S.S., and Kim, B.U., Morphological diversity of AlN nano- and microstructures: Synthesis, growth orientations and theoretical modelling, Int. Mater. Rev., https://doi.org/10.1080/09506608.2019.1641651

  21. Li, S., Ren, Y., Biswas, P., and Tse, S.D., Flame aerosol synthesis of nanostructured materials and functional devices, Prog. Energ. Combust. Sci., 2016, vol. 55, pp. 1–59. https://doi.org/10.1016/j.pecs.2016.04.002

    Article  CAS  Google Scholar 

  22. Mohanty, U.S., Electrodeposition: A versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals, J. Appl. Chem., 2011, vol. 41, no. 3, pp. 257–270. https://doi.org/10.1007/s10800-010-0234-3

    Article  CAS  Google Scholar 

  23. Gurrappa, I. and Binder, L., Electrodeposition of nanostructured coatings and their characterization: A review, Sci. Technol. Adv. Mater., 2008, vol. 9, no. 4, 043001. https://doi.org/10.1088/1468-6996/9/4/043001

    Article  CAS  Google Scholar 

  24. Liu, X., Liu, Z., Lu, J., Wu, X., Xu, B., and Chu, W., Electrodeposition preparation of Ag nanoparticles loaded TiO2 nanotube arrays with enhanced photocatalytic performance, Appl. Surf. Sci., 2014, vol. 288, pp. 513–517. https://doi.org/10.1016/j.apsusc.2013.10.062

    Article  CAS  Google Scholar 

  25. Kim, K.H., Lee, D.J., Cho, K.M., Kim, S.J., Park, J.K. and Jung, H.T., Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles, Sci. Rep., 2015, vol. 11, 9014. https://doi.org/10.1038/srep09014

    Article  CAS  Google Scholar 

  26. Sun, L., Su, T., Xu, L., and Du, H.B., Preparation of uniform Si nanoparticles for high-performance Li-ion battery anodes, Phys. Chem. Chem. Phys., 2016, vol. 18, no. 3, pp. 1521–1525. https://doi.org/10.1039/C5CP06585B

    Article  CAS  Google Scholar 

  27. Torabi, O., Naghibi, S., Golabgir, M.H., and Jamshidi, A., Mechanochemical synthesis of high crystalline cerium hexaboride nanoparticles from CeO2–B2O3–Mg ternary system, J. Chin. Chem. Soc., 2016, vol. 63, pp. 379–384. https://doi.org/10.1002/jccs.201500479

    Article  CAS  Google Scholar 

  28. Nersisyan, H.H., Won, H.I., Won, C.W., Jo, A., and Kim, J.H., Direct magnesiothermic reduction of titanium dioxide to titanium powder through combustion synthesis, Chem. Eng. J., 2014, vol. 235, pp. 67–74. https://doi.org/10.1016/j.cej.2013.08.104

    Article  CAS  Google Scholar 

  29. Deguchi, M., Yasuda, N., Zhu, C., Okinaka, N., and Akiyama, T., Combustion synthesis of TiFe by utilizing magnesiothermic reduction, J. Alloys Comp., 2015, vol. 622, pp. 102–107. https://doi.org/10.1016/j.jallcom.2014.10.051

    Article  CAS  Google Scholar 

  30. An, W., Su, J., Chen, Z., Gao, B., Zhang, X., Peng, X., Peng, S., Fu, J., and Chu, P.K., Low-temperature synthesis of mesoporous SiC hollow spheres by magnesiothermic reduction, J. Am. Ceram. Soc., 2016, vol. 99, no. 6, pp. 1859–1861. https://doi.org/10.1111/jace.14208

    Article  CAS  Google Scholar 

  31. Nersisyan, H.H., Yoo, B.U., Joo, S.H., Lee, K.H., and Lee, J.H., Polymer assisted approach to two-dimensional (2D) nanosheets of B4C, Chem. Eng. J., 2015, vol. 281, pp. 218–226. https://doi.org/10.1016/j.cej.2015.06.100

    Article  CAS  Google Scholar 

  32. Nersisyan, H.H., Lee, T.H., Lee, K.H., An, Y.S., Lee, J.S., and Lee, J.H., Few-atomic-layer boron nitride nanosheets synthesized in solid thermal waves, RSC Adv., 2015, vol. 5, no. 12, pp. 8579–8584. https://doi.org/10.1039/C4RA10907D

    Article  CAS  Google Scholar 

  33. Nersisyan, H.H., Lee, T.H., Lee, J.H., Suh, H., Kim, J.G., Son, H.T., and Kim, Y.H., NaF-assisted combustion synthesis of MoSi2 nanoparticles and their densification behavior, J. Phys. Chem. Sol., 2017, vol. 102, pp. 34–41. https://doi.org/10.1016/j.jpcs.2016.11.003

    Article  CAS  Google Scholar 

  34. Liu, X., Giordano, C., and Antonietti, M., A molten-salt route for synthesis of Si and Ge nanoparticles: Chemical reduction of oxides by electrons solvated in salt melt, J. Mater. Chem., 2012, vol. 22, no. 12, 5454. https://doi.org/10.1039/C2JM15453F

    Article  CAS  Google Scholar 

  35. Luo, W., Wang, X., Meyers, C., Wannenmacher, N., Sirisaksoontorn, W., Lerner, M.M., and Ji, X., Efficient fabrication of nanoporous Si and Si/Ge enabled by a heat scavenger in magnesiothermic reactions, Sci. Rep., 2012, vol. 3, 2222. https://doi.org/10.1038/srep02222

    Article  Google Scholar 

  36. Kim, K.H., Lee, D.J., Cho, K.M., Kim, S.J., Park, J.K., and Jung, H.T., Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles, Sci. Rep., 2015, vol. 5. https://doi.org/10.1038/srep09014

  37. Jimenez, J.A., Silicon as reducing agent for controlled production of plasmonic copper nanocomposite glasses: A Spectroscopic study, J. Electron. Mater., 2015, vol. 44, no. 11, pp. 4418–4423. https://doi.org/10.1007/s11664-015-3969-0

    Article  CAS  Google Scholar 

  38. Jamshidi, A., Nourbakhsh, A.A., Jafari, M., and Naghibi, S., Combination of mechanical activation and silicothermal reduction, and nitridation process to form X-sialon by using andalusite precursor, Mol. Cryst. Liq. Cryst., 2012, vol. 555, no. 1, pp. 112–120. https://doi.org/10.1080/15421406.2012.635082

    Article  CAS  Google Scholar 

  39. Sharifian, G.H. and Saidi, A., Silicothermic production and characterization of FeSiNi/SiO2 magnetic nanocomposite via mechanical alloying, J. Adv. Mater. Process., 2014, vol. 2, no. 4, pp. 49–54.

    Google Scholar 

  40. Nersisyan, H.H., Lee, S.H., Choi, J.H., Yoo, B.U, Suh, H., Kim, J.G., and Lee, J.H., Hierarchically porous carbon nanosheets derived from alkali metal carbonates and their capacitance in alkaline electrolytes, Mater. Chem. Phys., 2018, vol. 207, pp. 513–521. https://doi.org/10.1016/j.matchemphys.2018.01.010

    Article  CAS  Google Scholar 

  41. Shyriaev, A.A., Thermodynamics of SHS processes: Advanced approach, Int. J. Self-Propag. High-Temp. Synth., 1995, vol. 4, no.4, pp. 351–362.

    Google Scholar 

  42. Lin, H., Gerbec, J.A., Sushchikh, M., and McFarland, E.W., Synthesis of amorphous silicon carbide nanoparticles in a low temperature low pressure plasma reactor, Nanotechnologies, 2008, vol. 19, no. 32, 325601. https://doi.org/10.1088/0957-4484/19/32/325601

    Article  CAS  Google Scholar 

  43. An, K.H., Kim, W.S., Park, Y.S., Moon, J.M., Bae, D.J., Lim, S.C., Lee, Y.S., and Lee, Y.H., Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes, Adv. Funct. Mater., 2001, vol. 11, no. 5, pp. 387–392. https://doi.org/10.1002/1616-3028(200110)11:5<387::AID-ADFM387>3.0.CO;2-G

    Article  CAS  Google Scholar 

  44. Kim, C., Ngoc, B.T.N., Yang, K.S., Kojima, M., Kim, Y.A., Kim, Y.J., Endo, M., and Yang, S.C., Self-sustained thin webs consisting of porous carbon nanofibers for supercapacitors via the electrospinning of polyacrylonitrile solutions containing zinc chloride, Adv. Mater., 2007, vol. 19, no. 17, pp. 2341–2346. https://doi.org/10.1002/adma.200602184

    Article  CAS  Google Scholar 

  45. Chang, X., Xu, B., Hong, C., Han, J., Qin, F., Han, W., Cheng, H., Liu, C., and He, R., Carbon-bonded carbon fiber composites containing uniformly distributed silicon carbide, RSC Adv., 2014, vol. 4, no. 13, pp. 6591–6596. https://doi.org/10.1039/C3RA44913K

    Article  Google Scholar 

  46. Xiao, L., Yang, Y., Yin, J., Li, Q., and Zhang, L., Low temperature synthesis of flower-like ZnMn2O4 superstructures with enhanced electrochemical lithium storage, J. Power Sources, 2009, vol. 194, no. 2, pp.1089–1093. https://doi.org/10.1016/j.powsour.2009.06.043

    Article  CAS  Google Scholar 

  47. Sha, C., Zhang, F., Sun, H., Li, B., Li, Y., and Yang,Y., SiC/C composite mesoporous nanotubes as anode material for high-performance lithium-ion batteries, Mater. Lett., 2017, vol. 205, pp. 245–248. https://doi.org/10.1016/j.matlet.2017.06.021

    Article  CAS  Google Scholar 

  48. Wang, C., Li, Y., Ostrikov, K., Yang, Y., and Zhang, W., Synthesis of SiC decorated carbonaceous nanorods and its hierarchical composites Si/SiC/C for high-performance lithium-ion batteries, J. Alloys Comp., 2015, vol. 646, pp. 966–972. https://doi.org/10.1016/j.jallcom.2015.06.177

    Article  CAS  Google Scholar 

  49. Weast, R.C., CRC Handbook of Chemistry and Physics, Boca Raton: CRC Press, 1988.

    Google Scholar 

Download references

Funding

This work was supported by the Basic Research Laboratory Program through the Ministry of Education, Republic of Korea (2019R1A4A1026125).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. H. Nersisyan or J. H. Lee.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nersisyan, H.H., Lee, Y.J., Lee, J.H. et al. Combustion Synthesis of C and SiC Nanoparticles from Na2CO3–Si Mixtures: Characterization and Electrochemical Performance. Int. J Self-Propag. High-Temp. Synth. 29, 65–76 (2020). https://doi.org/10.3103/S1061386220020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386220020089

Keywords:

Navigation