Skip to main content
Log in

Preparation, Characterization, and Application Magnetic Fe3O4@SiO2@Bi2O3 Nanoparticles for the Synthesis of Diindolyloxindole Derivatives

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In this study, synthesis of diindolyl oxindole derivatives has been developed by the coupling of indole compounds, isatin compounds, catalyzed with nanomagnetic Fe3O4@SiO2@Bi2O3. Reactions proceeded smoothly, and the corresponding heterocyclic products have been obtained in good to high yields. Magnetic Fe3O4@SiO2@Bi2O3 catalyst has been produced by the hydrothermal method. At first, the magnetic nanoparticles Fe3O4 have been produced as the core and subsequently they have been coated with SiO2; finally, in the third stage, Bi2O3 has been deposited on Fe3O4@SiO2. The synthesized catalyst has been characterized by Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), thermal gravimetric analysis (TGA), dispersive energy X-ray spectroscopy (EDS), X-ray powder diffraction, vibrating sample Magnetometry (VSM), and transmission electron microscopy (TEM) techniques. This catalyst has been compared with other catalysts used in other methods for the synthesis of diindolyl oxindole derivatives. Using of water as the solvent, short reaction time, and recovery capability with a very slight reduction in the efficiency of the product even in the fourth stage of use are the advantages of application of this catalyst in the synthesis of derivatives of diindolyl oxindoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Z. Li, Q. Sun, X. Dong, ZH. Zhu, and Q. Lugao, J. Mater. Chem. 22, 22821 (2012). https://doi.org/10.1039/C2JM33899H

  2. M. Yang, H. Bofan, and Y. Zhizuo, Cryst. Eng. Commun. 13, 1843 (2011). https://doi.org/10.1039/C0CE00508H

    Article  Google Scholar 

  3. G. Zhu and Z. Xu, J. Am. Chem. Soc. 133, 148 (2011). https://doi.org/10.1021/ja1090996

    Article  CAS  PubMed  Google Scholar 

  4. Z. W. Pan, Z. L. Wang, and Z. R. Dan, Science 291, 1947 (2001). https://doi.org/10.1126/science.1058120

    Article  CAS  PubMed  Google Scholar 

  5. J. Hunang and Q. Wang, Sensors 9, 9903 (2009). https://doi.org/10.3390/s91209903

    Article  Google Scholar 

  6. A. Sabrin Zoolfakar, A. Rani, A. Morfa, and K. Khalantar zadeh, J. Mater. Chem. 2, 5247 (2014). https://doi.org/10.1039/C4TC00345D

    Article  Google Scholar 

  7. M. Ge, Y. Li, L. Liu, Z. Zhou, and W. Chen, J. Phys. Chem. B 115, 5220 (2011) . https://doi.org/10.1021/jp108414e

    Article  CAS  Google Scholar 

  8. Anilkumara, M., R. Pasrichab, and V. Ravic. Ceram. Int. 31, 889 (2005). https://doi.org/10.1016/j.ceramint.2004.09.002

    Article  CAS  Google Scholar 

  9. T. Junlin, H. Xie, X. Meng, and L. Shi, Catal. Commun. 68, 88 (2015). https://doi.org/10.1016/j.catcom.2015.04.032

    Article  CAS  Google Scholar 

  10. A. M. Azad, S. Larose, and S. A. Akbar, J. Mater. Sci. 29, 4135 (1994). https://doi.org/10.1007/BF00414192

    Article  CAS  Google Scholar 

  11. X. Gou, R. Li, G. Wang, Z. Chen, and D. Wexler, Nano-technology 20, 495501 (2009). https://doi.org/10.1088/0957-4484/20/49/495501

    Article  CAS  Google Scholar 

  12. J. Huang, G. Tan, H. Ren, W. Yang, and A. Xia, Appl. Mater. Interfaces 6, 21041 (2014). https://doi.org/10.1021/am505817h

    Article  CAS  Google Scholar 

  13. P. Majewski, J. Mat. Res. 15, 854 (2000). https://doi.org/10.1557/JMR.2000.0123

    Article  CAS  Google Scholar 

  14. N. Oradovic, S. Filipovic, N. Nikolic, et al., Powder Technol. 218, 157 (2012). https://doi.org/10.1016/j.powtec.2011.12.012

    Article  CAS  Google Scholar 

  15. M. H. Baki and F. Sheirani, Anal. Methods 5, 3255 (2013). https://doi.org/10.1039/C3AY40669E

    Article  CAS  Google Scholar 

  16. J. Zhao, B. Zhu, H. Yu, et al., J. Colloid Interface Sci. 389, 46 (2013). https://doi.org/10.1016/j.jcis.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  17. H. Parham, B. Zargar, and R. Shiralipour, J. Hazard. Mater. 206, 94 (2012). https://doi.org/10.1016/j.jhazmat.2011.12.026

    Article  CAS  Google Scholar 

  18. R. Linhardt, Q. M. Kainz, R. N. Grass, et al., RSC Adv. 4, 8541 (2014). https://doi.org/10.1039/C3RA46946H

    Article  CAS  Google Scholar 

  19. M. Shokouhimehr, Catal. J. 5, 534 (2015). https://doi.org/10.3390/catal5020534

    Article  CAS  Google Scholar 

  20. T. Kshetri, D. Chuong, J. Gautam, et al., Nano Today 22, 100 (2018). https://doi.org/10.1016/j.nantod.2018.08.006

    Article  CAS  Google Scholar 

  21. H. Hassani, M. Nasseri, B. Zakerinasab, and F. Rafiee, Appl. Organomet. Chem. 30, 408 (2016). https://doi.org/10.1002/aoc.3447

    Article  CAS  Google Scholar 

  22. M. Nasseri, B. Zakerinasab, and M. Samieadel, RSC Adv. 4, 41753 (2014) . https://doi.org/10.1039/C4RA06699E

  23. B. Zakerinasab, M. Nasseri, H. Hassani, and M. Samieadel, Res. Chem. Intermediates 42, 3169 (2016). https://doi.org/10.1007/s11164-015-2204-1

    Article  CAS  Google Scholar 

  24. M. A. Nasseri, F. Ahrari, and B. Zakerinasab, RSC Adv. 5, 13901 (2015). https://doi.org/10.1039/C4RA14551H

  25. Z. Yang, Gh. Zhang, J. Zhang, and W. Bai, Biosensor Bioelectron. 51, 268 (2014). https://doi.org/10.1016/j.bios.2013.07.054

    Article  CAS  Google Scholar 

  26. Sh. Xuant, Y. Xiang, J. C. Yu, and K. Ch. Leung, Langmuir 25, 11835 (2009) . https://doi.org/10.1021/la901462t

    Article  CAS  Google Scholar 

  27. Y. Xiet, B. Yant, J. Chen, et al., App. Mater. Interfaces 6, 8845 (2014). https://doi.org/10.1021/am501632f

    Article  CAS  Google Scholar 

  28. (a) A. M, Magerramov, F. N, Naghiyev, and G. Z. Mamedova, Russ. J. Org. Chem. 54, 1731 (2018). https://doi.org/10.1134/S1070428018110192.

  29. (b) S. P. Gubin, N. A. Kataeva, Russ. J. Coord. Chem. 32, 849 (2006). https://doi.org/10.1134/S1070328406120013

    Article  CAS  Google Scholar 

  30. R. Bouhfied, N. Joly, F. Ohmani, and E. Essassi, Lett. Org. Chem. 5, 3 (2008). https://doi.org/10.2174/157017808783330199

    Article  Google Scholar 

  31. S. N. Pandeya, P. Yogeeswar, E. A. Sausville, et al., Sci. Pharm. 68, 369 (2000). https://doi.org/10.3797/scipharm.aut-00-34

    Article  CAS  Google Scholar 

  32. N. Terzioğlu, N. Karalı, A. Gürsoy, et al., Arkivoc. 1, 109 (2006). https://doi.org/10.3998/ark.5550190.0007.113

    Article  Google Scholar 

  33. S. N. Pandeya, D. Sriram, G. Nath, and E. De Clercq, Eur. J. Med. Chem. 35, 249 (2000). https://doi.org/10.1016/S0223-5234(00)00125-2

    Article  CAS  PubMed  Google Scholar 

  34. M. P. Zaytseva, A. G. Muradova, and A. I. Sharapaev, Russ. J. Inorg. Chem. 63, 1684 (2018).https://doi.org/10.1134/S0036023618120239

    Article  CAS  Google Scholar 

  35. B. V. Subbareddy, N. Rajeswari, Y. Prashanthi, et al., Bioorg. Med. Chem. Lett. 22, 2460 (2012). https://doi.org/10.1016/j.bmcl.2012.02.011

    Article  CAS  Google Scholar 

  36. K. Nikoofar, M. Hanhighi, and Z. Khademi, Arab. J. Chem. 12, 3776 (2016). https://doi.org/10.1016/j.arabjc.2016.01.013

  37. A. Kamal, Y. V. V. Srikanth, M. Naseer et al., Bioorg. Med. Chem. Lett. 20, 5229 (2010). https://doi.org/10.1016/j.bmcl.2010.06.152

    Article  CAS  PubMed  Google Scholar 

  38. M. A. Nasseri, B. Zakerinasab, Iranian J. Org. Chem. 5, 1021 (2013).

    Google Scholar 

Download references

Funding

The authors acknowledge the Payame Noor University for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hassani.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassani, H., Ebrahim, S. & Feizi, N. Preparation, Characterization, and Application Magnetic Fe3O4@SiO2@Bi2O3 Nanoparticles for the Synthesis of Diindolyloxindole Derivatives. Russ. J. Inorg. Chem. 65, 940–947 (2020). https://doi.org/10.1134/S0036023620060054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620060054

Keywords:

Navigation