Skip to main content
Log in

Al-Doping of ZnO Thin Films Deposited by Spray Pyrolysis

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Undoped and Al-doped zinc oxide (AZO) layers, greatly transparent and with high mobility, have been prepared at low substrate temperature using a chemical reactive spray technique. The effect of aluminum incorporation in the zinc oxide (ZnO) lattice has been characterized by means of X-ray powder diffraction, Raman spectroscopy, electrical and optical measurements. AZO layers reveal a hexagonal wurtzite structure whose lattice parameter decreases with increasing Al content and whose crystal quality decreases for Al content higher than 2%. Low resistivity AZO films have been found for 3% Al content. Additionally, AZO layers exhibit a blue shift of the optical gap with the increase of Al content that is attributed to the Burstein–Moss effect due to the increase of the charge carrier concentration. A density of free electron greater than 2.0 × 1019 cm–3 is obtained for the AZO thin films with 5% Al. Our results encourage the use of AZO films deposited at a low temperature as electrodes and optical windows in photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. S. Shinde, P. S. Shinde, Y. W. Oh, et al., Appl. Surf. Sci. 258, 9969 (2012). https://doi.org/10.1016/j.apsusc.2012.06.058

    Article  CAS  Google Scholar 

  2. K. Hummer, Phys. Stat. Solidi 56, 249 (1973). https://doi.org/10.1002 /pssb.2220560124

  3. S. Kim, H. Yoon, D. Y. Kim, et al., Opt. Mater. 35, 2418 (2013). https://doi.org/10.1016/j.optmat.2013.06.048

    Article  CAS  Google Scholar 

  4. M. Sahal, B. Hartiti, A. Ridah, et al., Microelectron. J. 39, 1425 (2008). https://doi.org/10.1016/j.mejo.2008.06.085

  5. N. A. Vorobyeva, M. N. Rumyantseva, R. B. Vasiliev, et al., Russ. J. Inorg. Chem. 59, 403 (2014). https://doi.org/10.1134/S0036023614050192

  6. C. Charpentier, P. Prud’homme, P. Roca, and I. Cabarrocas, Thin Solid Films 531, 424 (2013). https://doi.org/10.1016/j.tsf.2013.01.077

    Article  CAS  Google Scholar 

  7. H. Von Wenckstern, H. Schmidt, M. Brandt, et al., Progr. Solid State Chem. 37, 153 (2009). https://doi.org/10.1016/j.progsolidstchem2009.11.008

  8. A. A. Firooz, R. A. Mirzaie, and F. Kamrani, J. Struct. Chem. 59, 739 (2018). https://doi.org/10.1134/S002247661803037X

    Article  CAS  Google Scholar 

  9. A. Barhoumi, G. Leroy, B. Duponchel, et al., Superlattices Microstruct. 82, 483 (2015). https://doi.org/10.1016/j.spmi.2015.03.007

    Article  CAS  Google Scholar 

  10. M.-H. Hsu, S.-P. Chang, S.-J. Chang, et al., Nanosci. Nanotechnol. 18, 3518 (2018). https://doi.org/10.1166/jnn.2018.14665

    Article  CAS  Google Scholar 

  11. Y. V. Vaganova, V. R. Mirolyubov, and I. V. Nikolaenko, Russ. J. Inorg. Chem. 59, 119 (2014). https://doi.org/10.1134/S00360236402022

  12. F. K. Shan, B. C. Shin, S. W. Jang, and Y. S. Yu, J. Eur. Ceram. Soc. 24, 1015 (2004). https://doi.org/10.1016/S0955-2219(03)00397-2

    Article  CAS  Google Scholar 

  13. S. M. Masloboeva, L. G. Arutyunyan, and M. N. Palatnikov, Russ. J. Inorg. Chem. 63, 449 (2018). https://doi.org/10.1134/S0036023618040137

    Article  CAS  Google Scholar 

  14. E. Placzek-Popko, K. M. Paradowska, M. A. Pietrzyk, and A. Kozanecki, Opto-Electron. Rev. 25, 181 (2017). https://doi.org/10.1016/j.opelre.2017.06.010

    Article  Google Scholar 

  15. B. Marí, M. Sahal, M. Mollar, et al., J. Solid State Electrochem. 16 (2011). https://doi.org/10.1007/s10008-011-1635-x

  16. E. P. Simonenko, N. P. Simonenko, I. A. Nagornov, et al., Russ. J. Inorg. Chem. 63, 1519 (2018). https://doi.org/10.1134/S0036023618110189

    Article  CAS  Google Scholar 

  17. L. N. Demyanets, V. V. Kireev, L. E. Li, et al. Russ. J. Inorg. Chem. 56, 1509 (2011). https://doi.org/10.1134/S0036023611100056

  18. M. Sahal, B. Marí, M. Mollar, and F. J. Manjón, Phys. Status Solidi C 7, 2306 (2010). https://doi.org/10.1002/pssc.200983751

  19. E. P. Zaretskayaa, V. F. Gremenok, A. V. Semchenko, et al., Semiconductors 49, 1253 (2015). https://doi.org/10.1134/S1063782615100280

    Article  CAS  Google Scholar 

  20. L. Vegard, Z. Phys. 5, 17 (1921). https://doi.org/10.1007/BF1349680

    Article  CAS  Google Scholar 

  21. G. L. Pearson and J. Bardeen, J. Phys. Rev. 75, 865 (1949). https://doi.org/10.1103/PhysRev.75.865

    Article  CAS  Google Scholar 

  22. K.C. Park, D. Y. Ma, and K. H. Kim, Thin Solid Films 305, 201 (1997). https://doi.org/10.1016/S0040-6090(97)00215-0

    Article  CAS  Google Scholar 

  23. A. El Manouni, F. J. Manjón, M. Mollar, et al., Superlattices Microstruct. 39, 185 (2006). https://doi.org/10.1016/j.spmi.2005.08.0

  24. C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, Phys. Rev. 181, 1351 (1969). https://doi.org/10.1103/PhysRev.181.1351

    Article  CAS  Google Scholar 

  25. M. L. Glasser, J. Phys. Chem. Solids 10, 229 (1959). https://doi.org/10.1016/0022-3697(59)90080-0

    Article  CAS  Google Scholar 

  26. T. C. Damen, S. P. S. Porto, and B. Tell, Phys. Rev. 142, 570 (1966). https://doi.org/10.1103/PhysRev.142.570

    Article  CAS  Google Scholar 

  27. I. Calizo, K. A. Alim, V. A. Fonoberov, et al., Proc. SPIE 6481, Quantum Dots, Particles, Nanoclusters IV 6481, 64810N (2007). https://doi.org/10.1117/12.713648

    Article  CAS  Google Scholar 

  28. X. Xu and C. Cao, J. Alloys Compd. 501, 265 (2010). https://doi.org/10.1016/j.jallcom.2010.04.086

    Article  CAS  Google Scholar 

  29. S. Shi, Y. Yang, J. Xu, et al., J. Alloys Compd. 576, 59 (2013). https://doi.org/10.1016/j.jallcom.2013.04.011

  30. X. Wang, J. Xu, X. Yu, et al., Appl. Phys. Lett. 91, 031908-1 (2007). https://doi.org/10.1063/1.2759272

    Article  CAS  Google Scholar 

  31. H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (WILEY-VCH, Weinheeim, 2009).

  32. K. A. Alim, V. A. Fonoberov, M. Shamsa, and A. A. Balandin, J. Appl. Phys. 97, 124313 (2005). https://doi.org/10.1063/1.1944222

  33. S. B. Yahia, L. Znaidi, A. Kanaev, and J. P. Petitet, Spectrochim. Acta A 71, 1234 (2008). https://doi.org/10.1016/j.saa.2008.03.032

  34. D. L. Golic, G. Brankovic, M. P. Nesic, et al., Nanotechnol. 22, 395603 (2011). https://doi.org/10.1088/0957-4484/22/39/395603

    Article  CAS  Google Scholar 

  35. F. J. Manjón, K. Syassen, and R. Lauck, High Pressure Res. 22, 299 (2002). https://doi.org/10.1080/08957950212798

    Article  Google Scholar 

  36. J. Serrano, A. H. Romero, F. J. Manjón, et al., Phys. Rev. B 69, 094306 (2004). https://doi.org/10.1103/PhysRevB.69.094306

    Article  CAS  Google Scholar 

  37. R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, et al., Phys. Rev. B 75, 165202-1 (2007). https://doi.org/10.1103/PhysRevB.75.165202

    Article  CAS  Google Scholar 

  38. A. Ismail, M. J. Abdullah, and J. King, Saud. Univ. Sci. 25, 209 (2013). https://doi.org/10.1016/j.jksus.2012.12.004

    Article  Google Scholar 

  39. F. Ajala, A. Hamrouni, A. Houas, et al., Appl. Surf. Sci. 454, 376 (2018).https://doi.org/10.1016/j.apsusc.2018.03.141

    Article  CAS  Google Scholar 

  40. F. J. Manjón, D. Errandonea, A. H. Romero, et al., Phys. Rev. B 77, 205204-1 (2008). https://doi.org/10.1103/PhysRevB.77.205204

    Article  CAS  Google Scholar 

  41. R. Ayouchi, D. Leinen, F. Martín, et al., Thin Solid Films 426, 68 (2003). https://doi.org/10.1016/S0040-6090(02)01331-7

    Article  CAS  Google Scholar 

  42. S.-S. Lin, J.-L. Huang, and P. Sajgalik, Surf. Coat. Tech. 185, 254 (2004). https://doi.org/10.1016/j.surfcoat.2003.12.007

    Article  CAS  Google Scholar 

  43. H.-l. Shen, H. Zhang, L.-F. Chao, et al., Prog. Nat. Sci.: Mater. Int. 20, 44 (2010). https://doi.org/10.1016/S1002-0071(12)60005-7

    Article  Google Scholar 

  44. K. L. Chopra and S. R. Das, Thin Film Solar Cells (Springer, US, 1983). https://doi.org/10.1007/978-1-4899-0418-8

    Book  Google Scholar 

  45. K. Tominaga, N. Umezu, I. Mori, et al., Thin Solid Films 334, 35 (1998). https://doi.org/10.1016 /S0040-6090(98)01112-2

    Article  CAS  Google Scholar 

  46. O. Kluth, G. Schöpe, B. Rech, et al., Thin Solid Films 502, 311 (2006). https://doi.org/10.1016/j.tsf.2005.07.313

    Article  CAS  Google Scholar 

  47. F. C. Devy, N. Barreau, and J. Kessler, Thin Solid Films 516, 7094 (2008).https://doi.org/10.1016/j.tsf.2007.12.053

    Article  CAS  Google Scholar 

  48. B. J. Jin, H. S. Woo, S. Im, et al., Appl. Surface. Sci. 169170, 521 (2001). https://doi.org/10.1016/S0169-4332(00)00751-0

  49. J. Tauc, Amorphous and Liquid Semiconductors, Ed. by J. Tauc (Plenum, London, 1974).

    Book  Google Scholar 

  50. M. Shkir, S. Al Faify, Sci. Rep. 7, 16091 (2017). https://doi.org/10.1038/s41598-017-16086-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. M. Shkir, S. AlFaify, I. S. Yahia, et al., Nanopart. Res. 19, 238 (2017). https://doi.org/10.1007/s11051.017-4020-6

    Article  Google Scholar 

  52. S. P. Shrestha and P. Basnet, Proc. SPIE 6793, 679301-1 (2008). https://doi.org/10.1117/12.799273

    Article  CAS  Google Scholar 

  53. E. Burstein, Phys. Rev. 93, 632 (1954). https://doi.org/10.1103/PhysRev.93.632

    Article  CAS  Google Scholar 

  54. T. S. Moss, Proc. Phys. Soc. B 67, 775 (1954). https://doi.org/10.1088/0370-1301/67/10/306

    Article  Google Scholar 

  55. A. P. Roth, J. B. Webb, and D. F. Williams, Phys. Rev. 25, 7836 (1982). https://doi.org/10.1103/PhysRevB.25.7836

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Ministerio de Economía y Competitividad (Spain) through grant ENE2016-77798-C4-2-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sahal.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahal, M., Marí, B. & Manjónc, F.J. Al-Doping of ZnO Thin Films Deposited by Spray Pyrolysis. Russ. J. Inorg. Chem. 65, 932–939 (2020). https://doi.org/10.1134/S0036023620060182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620060182

Keywords:

Navigation