Skip to main content
Log in

Investigation of the Physicochemical Properties of Ceramics in the Sm2O3–Y2O3–HfO2 System for Developing Promising Thermal Barrier Coatings

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of components of ceramics in the Sm2O3–Y2O3–HfO2 system on their thermophysical properties was studied. It was shown that the most stable materials at 1400°C are ternary ceramics in the system under investigation that contain ≤12.5 mol % Sm2O3; the thermal conductivity of these materials does not exceed 1.3 W/(m K). Increasing samarium oxide content in samples in the Sm2O3–Y2O3–HfO2 system was found to lead to significant changes in phase equilibria at temperatures ≥1000°C. The effect of the contents of individual components of the studied ceramics on the thermal conductivity and the linear thermal expansion coefficient, which largely determine the suitability of a ceramic material for using in a thermal barrier coating. It was shown that the addition to 12.5 mol % samarium oxide ensures the stability of the linear thermal expansion coefficient at acceptable values of the thermal conductivity of 0.8–1.6 W/(m K).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. N. Kablov, Aviats. Mater. Tekhnol., No. 1, 3 (2015). https://doi.org/10.18577/2071-9140-2015-0-1-3-33

  2. D. S. Kashin and P. A. Stekhov, Tr. Vses. Nauchno-Issled. Inst. Aviats. Mater., No. 2, 10 (2018). https://doi.org/10.18577/2307-6046-2018-0-2-10-10

  3. D. E. Kablov, V. V. Sidorov, S. A. Budinovskii, and P. G. Min, Aviats. Mater. Tekhnol., No. 1, 20 (2016). https://doi.org/10.18577/2071-9140-2016-0-1-20-23

  4. E. N. Kablov, O. G. Ospennikova, and I. L. Svetlov, Aviats. Mater. Tekhnol., No. 2, 3 (2017). https://doi.org/10.18577/2071-9140-2017-0-2-3-14

  5. E. N. Kablov, O. G. Ospennikova, and N. V. Petrushin, Aviats. Mater. Tekhnol., No. 1, 34 (2015). https://doi.org/10.18577/2071-9140-2015-0-1-34-40

  6. E. N. Kablov, O. G. Ospennikova, N. V. Petrushin, et al., Aviats. Mater. Tekhnol., No. 2, 14 (2015). https://doi.org/10.18577/2071-9140-2015-0-2-14-25

  7. K. W. Schlichting, N. P. Padture, and P. G. Klemens, J. Mater. Sci., 36, 3003 (2001). https://doi.org/10.1023/A:1017970924312

  8. D. A. Chubarov and P. V. Matveev, Aviats. Mater. Tekhnol., No. 4, 43 (2013).

  9. S. A. Budinovskii, A. A. Smirnov, P. V. Matveev, et al., Tr. Vses. Nauchno-Issled. Inst. Aviats. Mater., No. 4, 105 (2015). https://doi.org/10.18577/2307-6046-2015-0-4-5-5

  10. G. V. Samsonov, A. L. Borisova, et al., Physicochemical Properties of Oxides: A Reference Book (Metallurgiya, Moscow, 1978) [in Russian].

    Google Scholar 

  11. Kazuhide Matsumoto, Yoshiyasu Itoh, and Tsuneju Kameda, Sci. Technol. Adv. Mater., 4, 153 (2003). https://doi.org/10.1016/S1468-6996(03)00009-3

  12. N. I. Grechanyuk, P. P. Kucherenko, I. N. Grechanyuk, et al., Mizhvuz. Zb. Nauk. Notatki, No. 31, 92 (2011).

    Google Scholar 

  13. I. Gurrappa and A. Sambasiva Rao, Surf. Coat. Technol. 201, 3016 (2006). https://doi.org/10.1016/j.surfcoat.2006.06.026

    Article  CAS  Google Scholar 

  14. Chong Wang, M. Zinkevich, and F. Aldinger, Pure Appl. Chem. 79, 1731 (2007). https://doi.org/10.1351/pac200779101731

    Article  CAS  Google Scholar 

  15. C. V. Ramana and R. A. Choudhuri, UTSR Workshop, 2012. https://doi.org/10.2172/1132566

  16. Y. I. Folomeikin, F. N. Karachevtsev, and V. L. Stolyarova, Russ. J. Inorg. Chem. 64, 934 (2019). https://doi.org/10.1134/S0036023619070088

    Article  CAS  Google Scholar 

  17. G. Moscal and L. Swadzba, et al., J. Eur. Ceram. Soc. 32, 2025 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.043

    Article  CAS  Google Scholar 

  18. Hengbei Zhao, M. R. Begley, A. Heuer, et al., Surf. Coat. Technol. 205, 4355 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.03.028

    Article  CAS  Google Scholar 

  19. V. N. Guskov, K. S. Gavrichev, P. G. Gagarin, et al., Russ. J. Inorg. Chem. 64, 1265 (2019). https://doi.org/10.1134/S0036023619100048

    Article  CAS  Google Scholar 

  20. E. V. Didnik and S. N. Lakiza, et al., Powder Metall. Met. Ceram. 57, 301 (2018). https://doi.org/10.1007/s11106-018-9983-z

    Article  CAS  Google Scholar 

  21. Thermal Spray Materials Guide. www.oerlikon.com/ecomaXL/files/metco/oerlikon_BRO-0001.17_TS_MaterialGuide_EN.pdf (accessed October 31, 2019).

  22. B. Sundman, B. Jansson, and J. O. Andersson, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 9, 153 (1985).

    Article  CAS  Google Scholar 

  23. A. V. Shevchenko, L. M. Lopato, and I. E. Kir’yakova, Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 1991 (1984).

    CAS  Google Scholar 

  24. E. R. Andrievskaya and L. M. Lopato, in Proc. Int. Conf. on Solid-to-Solid Phase Transformations in Inorganic Materials (PTM’94), Farmington, PA, July 17–22,1994, Ed. by W. C. Johnson (Miner. Met. Mater. Soc., Pittsburg, PA, 1994), p. 125.

  25. O. R. Andrievskaya, Doctoral Dissertation in Chemistry (Kiev, 2003).

  26. L. M. Lopato, B. S. Nigmanov, A. V. Shevchenko, et al., Izv. Akad. Nauk SSSR, Neorg. Mater. 22, 771 (1986).

    CAS  Google Scholar 

  27. M. Foex and J. P. Traverse, Rev. Int. Hautes Temp. Refract. 3, 429 (1966).

    CAS  Google Scholar 

  28. E. N. Kablov, V. L. Stolyarova, V. A. Vorozhtcov, et al., Rapid Commun. Mass Spectrom. 34, e8693 (2019). https://doi.org/10.1002/rcm.8693

    Article  CAS  Google Scholar 

  29. A. V. Shevchenko, L. M. Lopato, and Z. A. Zaitseva, Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 1530 (1984).

    CAS  Google Scholar 

  30. M. A. Mikheev and I. M. Mikheeva, Physical Foundations of Heat Transfer (Energiya, Moscow, 1977) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-03-00721).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Doronin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kablov, E.N., Doronin, O.N., Artemenko, N.I. et al. Investigation of the Physicochemical Properties of Ceramics in the Sm2O3–Y2O3–HfO2 System for Developing Promising Thermal Barrier Coatings. Russ. J. Inorg. Chem. 65, 914–923 (2020). https://doi.org/10.1134/S0036023620060078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620060078

Keywords:

Navigation