Skip to main content
Log in

Synthesis and Sorption Characteristics of Magnetic Materials Based on Cobalt Oxides and Their Reduced Forms

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The study describes direct precipitation, original template, and additional thermal reduction methods for the synthesis of materials based on cobalt oxides and their composites, promising as magnetic sorbents for the selective extraction and preconcentration of uranium(VI) from aqueous media. The thermal decomposition of intermediates and the phase formation of final materials were studied by differential thermal analysis and powder X-ray diffraction. The surface morphology and structure of the obtained sorbent samples were investigated. The sorption activity and capacity of the materials were estimated in relation to the extraction of uranyl ions from aqueous solutions over a broad pH range (2–10), in particular, in the presence of carbonate ions (0.001, 0.01, 0.1, and 1 mg/L). It was found that quantitative sorption of uranium(VI) is dictated, to a higher extent, by the composition of the sorbent solid phase containing metallic cobalt. A set of magnetic measurements were carried out and magnetic characteristics of sorption materials were determined. The saturation magnetization for reduced sorbents can reach 133–237 emu/g, which is an additional benefit for their separation from solutions after treatment by magnetic separation techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. N. B. Singh, G. Nagpal, S. Agrawal, et al., Environ. Technol. Innov. 11, 87 (2018). https://doi.org/10.1016/j.eti.2018.05.006

    Article  Google Scholar 

  2. R. D. Ambashta and M. Sillanpää, J. Hazard. Mater. 180, 38 (2010). https://doi.org/10.1016/j.jhazmat.2010.04.105

    Article  CAS  PubMed  Google Scholar 

  3. P. D. Bhalara, D. Punetha, and K. Balasubramanian, J. Environ. Chem. Eng. 2, 1621 (2014). https://doi.org/10.1016/j.jece.2014.06.007

    Article  CAS  Google Scholar 

  4. T. Missana, M. Garcia-Gutierrez, and C. Maffiotte, J. Colloid Interface Sci. 260, 291 (2003). https://doi.org/10.1016/S0021-9797(02)00246-1

    Article  CAS  PubMed  Google Scholar 

  5. X. Shuibo, Z. Chun, Z. Xinghuo, et al., J. Environ. Radioact. 100, 162 (2009). https://doi.org/10.1016/j.jenvrad.2008.09.008

    Article  CAS  PubMed  Google Scholar 

  6. C. Jing, Y. L. Li, and S. Landsberger, J. Environ. Radioact. 164, 65 (2016). https://doi.org/10.1016/j.jenvrad.2016.06.027

    Article  CAS  PubMed  Google Scholar 

  7. P. Zong, S. Wang, Y. Zhao, et al., Chem. Eng. J. 220, 45 (2013). https://doi.org/10.1016/j.cej.2013.01.038

    Article  CAS  Google Scholar 

  8. N. A. Palchik, L. I. Razvorotneva, T. N. Moroz, et al., Russ. J. Inorg. Chem. 64, 308 (2019). https://doi.org/10.1134/S003602361903015X

    Article  CAS  Google Scholar 

  9. O. Riba, T. B. Scott, K. Vala Ragnarsdottir, et al., Geochim. Cosmochim. Acta 72, 4047 (2008). https://doi.org/10.1016/j.gca.2008.04.041

    Article  CAS  Google Scholar 

  10. E. K. Papynov, A. S. Portnyagin, A. I. Cherednichenko, et al., Dokl. Phys. Chem. 468, 67 (2016). https://doi.org/10.1134/S001250161605002X

    Article  CAS  Google Scholar 

  11. E. K. Papynov, I. A. Tkachenko, V. Y. Maiorov, et al., Radiochemistry 61, 28 (2019). https://doi.org/10.1134/S1066362219010053

    Article  CAS  Google Scholar 

  12. H. Abdolmohammad-Zadeh, Z. Ayazi, and S. Hosseinzadeh, Microchem. J. 153, 104268 (2020).https://doi.org/10.1016/j.microc.2019.104268

  13. J. Zolgharnein, K. Dalvand, M. Rastgordani, et al., J. Alloys Compd. 725, 1006 (2017). https://doi.org/10.1016/j.jallcom.2017.07.228

    Article  CAS  Google Scholar 

  14. J. Bin Chung and J. S. Chung, Chem. Eng. Sci. 60, 1515 (2005). https://doi.org/10.1016/j.ces.2004.11.002

    Article  CAS  Google Scholar 

  15. F. Nekouei, S. Nekouei, I. Tyagi, et al., J. Mol. Liq. 201, 124 (2015). https://doi.org/10.1016/j.molliq.2014.09.027

    Article  CAS  Google Scholar 

  16. Y. S. Haiduk, A. A. Savitsky, A. A. Khort, et al., Russ. J. Inorg. Chem. 64, 717 (2019). https://doi.org/10.1134/S003602361906007X

    Article  CAS  Google Scholar 

  17. H. H. Wang, X. R. Li, G. Q. Fei, et al., Express Polym. Lett. 4, 670 (2010). https://doi.org/10.3144/expresspolymlett.2010.82

    Article  CAS  Google Scholar 

  18. E. K. Papynov, V. Y. Mayorov, M. S. Palamarchuk, et al., J. Sol-Gel Sci. Technol. 68, 374 (2013). https://doi.org/10.1007/s10971-013-3039-0

    Article  CAS  Google Scholar 

  19. A. I. Busev, V. G. Tiptsova, and V. M. Ivanov, Manual on Analytical Chemistry of Rare Earths (Khimiya, Moscow, 1978) [in Russian].

    Google Scholar 

  20. R. J. Wu, J. G. Wu, T. K. Tsai, et al., Sensors Actuat. 120, 104 (2006). https://doi.org/10.1016/j.snb.2006.01.053

    Article  CAS  Google Scholar 

  21. D. Zhao, X. Wang, S. Yang, et al., J. Environ. Radioact. 103, 20 (2012). https://doi.org/10.1016/j.jenvrad.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  22. R. A. Crane, M. Dickinson, I. C. Popescu, et al., Water Res. 45, 2931 (2011). https://doi.org/10.1016/j.watres.2011.03.012

    Article  CAS  PubMed  Google Scholar 

  23. T. B. Scott, G. C. Allen, P. J. Heard, et al., Proc. R. Soc. A Math. Phys. Eng. Sci. 461, 1247 (2005). https://doi.org/10.1098/rspa.2004.1441

  24. R. A. Crane and T. B. Scott, J. Hazard. Mater. 211212, 112 (2012 )https://doi.org/10.1016/j.jhazmat.2011.11.073

Download references

ACKNOWLEDGMENTS

The study was carried out using research equipment of Shimadzu with the support of Genzo Shimadzu scholarship and equipment of the Center for Collective Use “Far Eastern Center of Structural Studies” (Institute of Chemistry, Far East Branch, Russian Academy of Sciences) and the interdisciplinary Center for Collective Use in the Field of Nanotechnologies and New Functional Materials (Far Eastern Federal University, Vladivostok, Russia).

Funding

Experimental work on the reduction synthesis and study of the physicochemical characteristics of magnetic sorbents was performed within State Assignment of the Ministry of Science and Higher Education of the Russian Federation 4.8063.2017/BCh. The evaluation of the sorption properties was supported by the Russian Foundation for Basic Research (project no. 18-33-00066 mol_a).

The experimental work on the precipitation synthesis and measurement and analysis of the magnetic properties of the developed materials was supported by the Russian Science Foundation (project no. 19-72-20071).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Papynov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papynov, E.K., Dran’kov, A.N., Tkachenko, I.A. et al. Synthesis and Sorption Characteristics of Magnetic Materials Based on Cobalt Oxides and Their Reduced Forms. Russ. J. Inorg. Chem. 65, 820–828 (2020). https://doi.org/10.1134/S0036023620060157

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620060157

Keywords:

Navigation