Skip to main content
Log in

Biodiscoloration, Detoxification and Biosorption of Reactive Blue 268 by Trametes sp. M3: a Strategy for the Treatment of Textile Effluents

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The concern with the environment and the depletion of natural resources has aroused the interest for the rational use and recycling of water. Therefore, this study evaluated the capacity of the Trametes sp. M3 isolate in the bioremediation of Reactive Blue (RB) 268 dye and its potential for use as an adsorbent in the treatment of textile effluents. In a solid medium containing RB 268, the discoloration rate was 1.00 and the growth rate was 1.4 cm/day. When evaluated in the in vivo biodiscoloration process, 100% of the dye lost its color after 120 h. The oxidative enzyme laccase was found in cultures containing the dye with high activity, indicating that it underwent induction. The chromatogram after cultivation of the fungus showed that there was a change in the structure of RB 268. The mycelium of the culture with the dye was analyzed by FTIR, pointing to an adsorption of RB 268 or its metabolites despite the absence of the color. In the biosorption, the best results were obtained when the mycelium was treated with HCl. The toxicity of the medium decreased after the cultivation of the fungus allowing the survival of the microcrustaceans in the acute toxicity bioassay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida, V. R., Szpoganicz, B., Chou, L., Baert, K., Hubin, A., & Bonneville, S. (2016). Equilibrium and out-of-equilibrium investigation of proton exchange and CuII and ZnII complexation on fungal mycelium (Trametes hirsuta). Journal of the Brazilian Chemical Society, 27.

  • Arantes, V., Baldocchi, C., & Milagres, A. M. F. (2006). Degradation and decolorization of a biodegradable-resistent polymeric dye by chelator-mediated Fenton reactions. Chemosphere, 63, 1764–1772.

    Article  CAS  Google Scholar 

  • Araújo, C. A. V., Maciel, G. M., Rodrigues, E. A., Silva, L. L., Oliveira, R. F., Brugnari, T., Peralta, R. M., & Souza, C. G. M. (2017). Simultaneous removal of the antimicrobial activity and toxicity of sulfamethoxazole and trimethoprim by white rot fungi. Water, Air, & Soil Pollution, 228, 341.

    Article  Google Scholar 

  • Arica, M. Y., & Bayramoğlu, G. (2007). Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. Journal of Hazardous Materials, 149, 499–507.

    Article  CAS  Google Scholar 

  • Asgher, M., Bhatti, H., Ashradf, M., & Legge, R. (2008). Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation, 19, 771–783.

    Article  CAS  Google Scholar 

  • Brugnari, T., Pereira, M. G., Bubna, G. A., Freitas, E. N., Contato, A. G., Corrêa, R. C. G., Castoldi, R., Souza, C. G. M., Polizeli, M. L. T. M., Bracht, A., & Peralta, R. M. (2018). A highly reusable MANAE-agarose-immobilized Pleurotus ostreatus laccase for degradation of bisphenol A. Science of the Total Environment, 634, 1346–1351.

    Article  CAS  Google Scholar 

  • Cha, C. J., Doerge, D. R., & Cerniglia, C. E. (2001). Biotransformation of malachite green by the fungus Cunninghamella elegans. Applied and Environmental Microbiology, 67, 4358–4360.

    Article  CAS  Google Scholar 

  • Chen, K. C., Wu, J. Y., Liou, D. J., & Hwang, S. C. J. (2003). Decolorization of the textile dyes by newly isolated bacterial strains. Journal of Biotechnology, 101, 57–68.

    Article  CAS  Google Scholar 

  • Chenaux, P. R., Lalji, N., & Lefebvre, D. D. (2014). Trametes meyenii possesses elevated dye degradation abilities under normal nutritional conditions compared to other white rot fungi. AMB Express, 4, 74.

    Article  Google Scholar 

  • Chequer, F.M.D., Oliveira, G.A.R., Ferraz, E.R.A., Cardoso, J.C., Zanoni, M.V.B., & Oliveira, D.P. (2013). Textile dyes: dyeing process and environmental impact, eco-friendly textile dyeing and finishing, Dr. Melih Gunay (ed), InTech.

  • Coelho-Moreira, J. S., Bracht, A., Souza, A. C. S., Oliveira, R. F., Sá-Nakanishi, A. B., Souza, C. G. M., & Peralta, R. M. (2013). Degradation of diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450. BioMed Research International, 2013, 1–9.

    Article  Google Scholar 

  • Contato, A. G., Inácio, F. D., Brugnari, T., Araújo, C. A. V., Maciel, G. M., Haminiuk, C. W. I., Peralta, R. M., & Souza, C. G. M. (2020). Solid-state fermentation with orange waste: optimization of laccase production from Pleurotus pulmonarius CCB-20 and decolorization of synthetic dyes. Acta Scientiarum. Biological Sciences, 42, e52699.

    Article  Google Scholar 

  • Das, D., Basak, G., Lakshmi, V., & Das, N. (2012). Kinetics and equilibrium studies on removal of zinc(II) by untreated and anionic surfactant treated dead biomass of yeast: Batch and column mode. Biochemical Engineering Journal, 64, 30–47.

    Article  CAS  Google Scholar 

  • Diwaniyan, S., Kharb, D., Raghukumar, C., & Kuhad, R. C. (2010). Decolorization of synthetic dyes and textile effluents by basidiomycetous fungi. Water, Air, & Soil Pollution, 210, 409–419.

    Article  CAS  Google Scholar 

  • El-Sheekh, M. M., Gharieb, M. M., & Abou-El-Souod, G. W. (2009). Biodegradation of dyes by some green algae and cyanobacteria. International Biodeterioration & Biodegradation, 63, 699–704.

    Article  CAS  Google Scholar 

  • Faraco, V., Pezzella, C., Miele, A., Giardina, P., & Sannia, G. (2009). Bio-remediation of colored industrial wastewaters by the white-rot-fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation, 20, 209–220.

    Article  CAS  Google Scholar 

  • Guaratini, C. C. I., & Zanoni, M. V. B. (2000). Corantes têxteis. Quimica Nova, 23, 71–78.

    Article  CAS  Google Scholar 

  • Hatakka, A. (1994). Lignin-modifying enzymes from selected white-rot-fungi: production and role in lignin degradation. FEMS Microbiology Reviews, 13, 125–135.

    Article  CAS  Google Scholar 

  • Heinfling, A., Martínez, J., & Marínez, A. T. (1998). Transformation of industrial dyes by manganese-independent reaction. Applied and Environmental Microbiology, 64, 2788–2793.

    Article  CAS  Google Scholar 

  • Hubbe, M. A., Beck, K. R., O’Neal, W. G., & Sharma, Y. C. (2012). Cellulosic substrates for removal of pollutants from aqueous systems: a review. BioResources, 7, 2592–2687.

    CAS  Google Scholar 

  • Kalyani, D. C., Telke, A. A., Dhanve, R. S., & Jadhav, J. P. (2009). Ecofriendly biodegradation and detoxification of Reactive Red 2 textile dye by newly isolated Pseudomonas sp. SUK1. Journal of Hazardous Materials, 163, 735–742.

    Article  CAS  Google Scholar 

  • Kaushik, P., & Malik, A. (2009). Fungal dye decolourization: recent advances and future potential. Environment International, 35, 127–141.

    Article  CAS  Google Scholar 

  • Kunz, A., Peralta-Zamora, P., Moraes, S. G., & Duran, N. (2002). Novas tendências no tratamento de efluentes têxteis. Química Nova, 25, 78–82.

    Article  CAS  Google Scholar 

  • Li, L., Dai, W., Yu, P., Zhao, J., & Qu, Y. (2009). Decolorization of synthetic dyes by crude laccase from Rigidoporus lignosus W1. Journal of Chemical Technology & Biotechnology, 84, 399–404.

    Article  CAS  Google Scholar 

  • Maciel, G. M., Souza, C. G. M., Araujo, C. A. V., Bona, E., Haminiuk, C. H. I., Castoldi, R., Bracht, A., & Peralta, R. M. (2013). Biosorption of herbicide picloram from aqueous solutions by live and heat-treated biomasses of Ganoderma lucidum (Curtis) P. Karst and Trametes sp. Chemical Engineering Journal, 215-216, 331–338.

    CAS  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  • Muñoz, C., Guillén, F., Martínez, A. T., & Martínez, M. J. (1997). Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Current Microbiology, 34, 1–5.

    Article  Google Scholar 

  • Phan, K., Van Den Broeck, E., Van Speybroeck, V., De Clerck, K., Raes, K., & De Meester, S. (2020). The potential of anthocyanins from blueberries as a natural dye for cotton: a combined experimental and theoretical study. Dyes and Pigments, 176, 108180.

    Article  CAS  Google Scholar 

  • Ramya, M., Anusha, B., Kalavathy, S., & Devilaksmi, S. (2007). Biodecolorization and biodegradation of Reactive Blue by Aspergillus sp. African Journal of Biotechnology, 6, 1441–1445.

    CAS  Google Scholar 

  • Ríoz-Gómez, J., Ferrer-Monteagudo, B., López-Lorente, A. I., Lucena, R., Luque, R., & Cárdenas, S. (2018). Efficient combined sorption/photobleaching of dyes promoted by cellulose/titania-based nanocomposite films. Journal of Cleaner Production, 194, 167–173.

    Article  Google Scholar 

  • Russoa, M. E., Di Natalea, F., Prigioneb, V., Tiginib, V., Marzocchellaa, A., & Vareseb, G. C. (2010). Adsorption of acid dyes on fungal biomass: Equilibrium and kinetics characterization. Chemical Engineering Journal, 162, 537–535.

    Article  Google Scholar 

  • Saito, T., Hong, P., Kato, K., Okazaki, M., Inagaki, H., & Maeda, S. (2003). Purification and characterization of an extracellular laccase of a fungus (family Chaetomiaceae) isolated from soil. Enzyme and Microbial Technology, 33, 520–526.

    Article  CAS  Google Scholar 

  • Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan Institute of Chemical Engineers, 1, 138–157.

    Article  Google Scholar 

  • Shedbalkar, U., Dhanve, R., & Jadhav, J. (2008). Biodegardation of triphenylmethane dye cotton blue by Penicillium ochrochloron MTCC 517. Journal of Hazardous Materials, 157, 472–479.

    Article  CAS  Google Scholar 

  • Subramanian, V., & Yadav, J. S. (2009). Role of P450 monooxygenases in the degradation of the endocrine-disrupting chemical nonylphenol by the white rot fungus Phanerochaete chrysosporium. Applied and Environmental Microbiology, 75, 5570–5580.

    Article  CAS  Google Scholar 

  • Sun, Q., Jiang, L., Li, M., & Sun, J. (2020). Assessment on thermal hazards of reactive chemicals in industry: state of the art and perspectives. Progress in Energy and Combustion Science, 78, 100832.

    Article  Google Scholar 

  • Tien, M., & Kirk, T. K. (1983). Lignin degrading enzyme from Phanerochaete chrysosporium: purification, characterization and catalytic properties of unique H2O2-requiring oxygenase. Proceedings of the National Academy of Sciences of the United States of America, 81, 2280–2284.

    Article  Google Scholar 

  • Vogel, H. J. (1956). A convenient growth medium for Neurospora crassa. Microbial Genetics Bulletin, 13, 42–47.

    Google Scholar 

  • Wang, C., Yediler, A., Lienert, D., Wang, Z., & Kettrup, A. (2002). Toxicity evaluation of reactive dyestuffs auxiliaries and selected effluents in textile finishing industry to luminescent bacteria Vibrio fischeri. Chemosphere, 46, 339–344.

    Article  CAS  Google Scholar 

  • Wariishi, H., Valli, K., & Gold, M. H. (1992). Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Journal of Biological Chemistry, 267, 23688–23695.

    CAS  Google Scholar 

  • Yang, Q., Zhan, H., Wang, S., Fu, S., & Li, K. (2008). Modification of eucalyptus CTMP fibres with white-rot fungus Trametes hirsute—effects on fibre morphology and paper physical strengths. Bioresource Technology, 99, 8118–8124.

    Article  CAS  Google Scholar 

  • Yesilada, O., Asma, D., & Cing, S. (2003). Decolorization of textile dyes by fungal pellets. Process Biochemistry, 38, 933–938.

    Article  CAS  Google Scholar 

Download references

Funding

The authors received financial support from the Conselho Nacional de Desenvolvimento Científico (CNPq) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Graça Contato.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Araújo, C.A.V., Contato, A.G., Aranha, G.M. et al. Biodiscoloration, Detoxification and Biosorption of Reactive Blue 268 by Trametes sp. M3: a Strategy for the Treatment of Textile Effluents. Water Air Soil Pollut 231, 349 (2020). https://doi.org/10.1007/s11270-020-04723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04723-7

Keywords

Navigation