Skip to main content

Advertisement

Log in

Progress for sustainability in the mist assisted cooling techniques: a critical review

  • REVIEW ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The proper implementation of sustainable manufacturing processes is an effective step towards a clean environment. The modern cooling strategies applied in the manufacturing sector have presented promising solutions that enable economic growth and ecological environment. In machining operations, cryogenic cooling and minimum quantity lubrication (MQL) have been extensively utilized to replace conventional cooling techniques. Thus, this work offers a detailed review of major works focused on manufacturing processes that use some of these sustainable cooling/lubrication modes (i.e., MQL, nanocutting fluids, nanofluid-based MQL strategy, and other miscellaneous MQL upgrades). The main driver of this study is to create a bridge between the past and present studies related to MQL and MQL upgrades. In this way, a new guideline can be established to offer clear directions for a better economic vision and a cleaner manufacturing process. Thus, this review has mainly focused on the machining of the most commonly used materials under MQL-related methods in conventional operations including turning, milling, drilling, and grinding. Current work provides a detailed insight into the major benefits, limitations, as well as mechanisms of cooling strategies that directly affects the machinability performance from a sustainable point of view. In summary, further potential upgrades are indicated so that it will help to drive more sustainable approaches in terms of cooling and lubrication environment during machining processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Lopes JC, Garcia MV, Volpato RS, de Mello HJ, Ribeiro FSF, de Angelo Sanchez LE, de Oliveira RK, Neto LD, Aguiar PR, Bianchi EC (2020) Application of MQL technique using TiO2 nanoparticles compared to MQL simultaneous to the grinding wheel cleaning jet. Int J Adv Manuf Technol 106:2205–2218. https://doi.org/10.1007/s00170-019-04760-5

    Article  Google Scholar 

  2. Yıldırım ÇV, Kıvak T, Sarıkaya M, Şirin Ş (2020) Evaluation of tool wear, surface roughness/topography and chip morphology when machining of Ni-based alloy 625 under MQL, cryogenic cooling and CryoMQL. J Mater Res Technol 9:2079–2092. https://doi.org/10.1016/J.JMRT.2019.12.069

    Article  Google Scholar 

  3. Sato BK, de Sales AR, Lopes JC, LE de A S, de Mello HJ, de Aguiar PR, Bianchi EC (2018) Influence of water in the MQL technique in the grinding of steel AISI 4340 using CBN wheels. REM - Int Eng J 71:391–396

    Article  Google Scholar 

  4. Rodriguez RL, Lopes JC, Mancini SD, de Ângelo Sanchez LE, de Almeida Varasquim FMF, Volpato RS, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Contribution for minimization the usage of cutting fluids in CFRP grinding. Int J Adv Manuf Technol 103:487–497. https://doi.org/10.1007/s00170-019-03529-0

    Article  Google Scholar 

  5. Gupta MK, Song Q, Liu Z, Pruncu CI, Mia M, Singh G, Lozano JA, Carou D, Khan AM, Jamil M, Pimenov DY (2019) Machining characteristics based life cycle assessment in eco-benign turning of pure titanium alloy. J Clean Prod 251:119598. https://doi.org/10.1016/J.JCLEPRO.2019.119598

    Article  Google Scholar 

  6. Gupta MK, Mia M, Pruncu CI, Kapłonek W, Nadolny K, Patra K, Mikolajczyk T, Pimenov DY, Sarikaya M, Sharma VS (2019) Parametric optimization and process capability analysis for machining of nickel-based superalloy. Int J Adv Manuf Technol 102:3995–4009. https://doi.org/10.1007/s00170-019-03453-3

    Article  Google Scholar 

  7. Gupta MK, Mia M, Singh G, Pimenov DY, Sarikaya M, Sharma VS (2019) Hybrid cooling-lubrication strategies to improve surface topography and tool wear in sustainable turning of Al 7075-T6 alloy. Int J Adv Manuf Technol 101:55–69. https://doi.org/10.1007/s00170-018-2870-4

    Article  Google Scholar 

  8. Öndin O, Kıvak T, Sarıkaya M, Yıldırım ÇV (2020) Investigation of the influence of MWCNTs mixed nanofluid on the machinability characteristics of PH 13-8 Mo stainless steel. Tribol Int 106323. https://doi.org/10.1016/j.triboint.2020.106323

  9. de Martini FL, Lopes JC, Ribeiro FSF, Gallo R, Razuk HC, de Angelo Sanchez LE, de Aguiar PR, de Mello HJ, Bianchi EC (2019) Thermal model for surface grinding application. Int J Adv Manuf Technol 104:2783–2793. https://doi.org/10.1007/s00170-019-04101-6

    Article  Google Scholar 

  10. Lu Z, Zhang D, Zhang X, Peng Z (2020) Effects of high-pressure coolant on cutting performance of high-speed ultrasonic vibration cutting titanium alloy. J Mater Process Technol 279:116584. https://doi.org/10.1016/j.jmatprotec.2019.116584

    Article  Google Scholar 

  11. Francelin RP, da Costa WB, Lopes JC, Francelin AP, de Mello HJ, de Aguiar PR, Bianchi EC (2018) Evaluation of the oil flow using the MQL technique applied in the cylindrical plunge grinding of AISI 4340 steel with cbn grinding wheel. Rev Esc Minas 71:397–402. https://doi.org/10.1590/0370-44672017710139

    Article  Google Scholar 

  12. Sharma AK, Tiwari AK, Dixit AR (2016) Effects of minimum quantity lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. J Clean Prod 127:1–18. https://doi.org/10.1016/J.JCLEPRO.2016.03.146

    Article  Google Scholar 

  13. Hoffman PJ, Hopewell ES, Janes B, Sharp Jr KM (2012) Precision machining technology. Cengage Learning

    Google Scholar 

  14. Sharma VS, Singh G, Sørby K (2015) A review on minimum quantity lubrication for machining processes. Mater Manuf Process 30:37–41. https://doi.org/10.1080/10426914.2014.994759

    Article  Google Scholar 

  15. Debnath S, Reddy MM, Yi QS (2014) Environmental friendly cutting fluids and cooling techniques in machining: A review. J Clean Prod 83:33–47

    Article  Google Scholar 

  16. Lopes JC, Garcia MV, Valentim M, Javaroni RL, Ribeiro FSF, de Angelo Sanchez LE, de Mello HJ, Aguiar PR, Bianchi EC (2019) Grinding performance using variants of the MQL technique: MQL with cooled air and MQL simultaneous to the wheel cleaning jet. Int J Adv Manuf Technol 105:4429–4442. https://doi.org/10.1007/s00170-019-04574-5

    Article  Google Scholar 

  17. Mulyadi IH, Balogun VA, Mativenga PT (2015) Environmental performance evaluation of different cutting environments when milling H13 tool steel. J Clean Prod 108:110–120. https://doi.org/10.1016/j.jclepro.2015.07.024

    Article  Google Scholar 

  18. Ginting YR, Boswell B, Biswas W, Islam MN (2015) Investigation into alternative cooling methods for achieving. Procedia CIRP 29:645–650. https://doi.org/10.1016/j.procir.2015.02.184

    Article  Google Scholar 

  19. Campatelli G, Scippa A (2016) Environmental impact reduction for a turning process: comparative analysis of lubrication and cutting inserts substitution strategies. Procedia CIRP 55:200–205

    Article  Google Scholar 

  20. Mia M, Gupta MK, Singh G, Królczyk G, Pimenov DY (2018) An approach to cleaner production for machining hardened steel using different cooling-lubrication conditions. J Clean Prod 187:1069–1081. https://doi.org/10.1016/J.JCLEPRO.2018.03.279

    Article  Google Scholar 

  21. Dhar NR, Islam MW, Islam S, Mithu MAH (2006) The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI-1040 steel. J Mater Process Technol 171:93–99. https://doi.org/10.1016/J.JMATPROTEC.2005.06.047

    Article  Google Scholar 

  22. Prasad MMS (2013) Performance evaluation of nano graphite inclusions in cutting fluids with Mql technique in turning of Aisi 1040. IJRET Int J Res Eng Technol 2:381–393

    Google Scholar 

  23. Özbek O, Saruhan H (2020) The effect of vibration and cutting zone temperature on surface roughness and tool wear in eco-friendly MQL turning of AISI D2. J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2020.01.010

  24. Sarıkaya M, Güllü A (2015) Multi-response optimization of minimum quantity lubrication parameters using Taguchi-based grey relational analysis in turning of dif fi cult-to-cut alloy Haynes 25. J Clean Prod 91:347–357. https://doi.org/10.1016/j.jclepro.2014.12.020

    Article  Google Scholar 

  25. Sreejith PS (2008) Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions. Mater Lett 62:276–278. https://doi.org/10.1016/J.MATLET.2007.05.019

    Article  Google Scholar 

  26. Khan MMA, Mithu MAH, Dhar NR (2009) Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. J Mater Process Technol 209:5573–5583. https://doi.org/10.1016/J.JMATPROTEC.2009.05.014

    Article  Google Scholar 

  27. Sarıkaya M, Yılmaz V, Güllü A (2016) Analysis of cutting parameters and cooling/lubrication methods for sustainable machining in turning of Haynes 25 superalloy. J Clean Prod 133:172–181. https://doi.org/10.1016/j.jclepro.2016.05.122

    Article  Google Scholar 

  28. Yazid MZA, Cheharon CH, Ghani JA, Ibrahim GA, Said AYM (2011) Surface integrity of Inconel 718 when finish turning with PVD coated carbide tool under MQL. Procedia Eng 19:396–401. https://doi.org/10.1016/j.proeng.2011.11.131

    Article  Google Scholar 

  29. Ali SM, Dhar NR, Dey SK (2011) Effect of minimum quantity lubrication ( MQL ) on cutting performance in turning medium carbon steel by uncoated carbide insert at different speed-feed combinations. Adv Prod Eng Manag 6:185–196

    Google Scholar 

  30. Ozcelik B, Kuram E, Cetin MH, Demirbas E (2011) Tribology International Experimental investigations of vegetable based cutting fluids with extreme pressure during turning of AISI 304L. Tribiology Int 44:1864–1871. https://doi.org/10.1016/j.triboint.2011.07.012

    Article  Google Scholar 

  31. Borkar NB, Chaudhari SS, Amale AB (2011) Experimental investigation on the role of MQL and its effects on tool wear in turning of mild steel. Int J Mod Eng Res 1:203–209

    Google Scholar 

  32. Sivalingam V, Zan Z, Sun J, Selvam B, Gupta MK, Jamil M, Mia M (2020) Wear behaviour of whisker-reinforced ceramic tools in the turning of Inconel 718 assisted by an atomized spray of solid lubricants. Tribol Int 106235. https://doi.org/10.1016/j.triboint.2020.106235

  33. Amrita M, Srikant RR, Sitaramaraju AV, Prasad MMS, Krishna PV (2013) Experimental investigations on influence of mist cooling using nanofluids on machining parameters in turning AISI 1040 steel. Proc Inst Mech Eng Part J J Eng Tribol 227:1334–1346. https://doi.org/10.1177/1350650113491934

    Article  Google Scholar 

  34. Liu Z, An Q, Xu J, Chen M, Han S (2013) Wear performance of (nc-AlTiN)/(a-Si3N4) coating and (nc-AlCrN)/(a-Si3N4) coating in high-speed machining of titanium alloys under dry and minimum quantity lubrication (MQL) conditions. Wear 305:249–259. https://doi.org/10.1016/J.WEAR.2013.02.001

    Article  Google Scholar 

  35. Hadad M, Sadeghi B (2013) Minimum quantity lubrication-MQL turning of AISI 4140 steel alloy. J Clean Prod 54:332–343. https://doi.org/10.1016/j.jclepro.2013.05.011

    Article  Google Scholar 

  36. De Angelo Sanchez LE, Palma GL, Marinescu I, Modolo DL, Nalon LJ, Santos AE (2013) Effect of different methods of cutting fluid application on turning of a difficult-to-machine steel (SAE EV-8). Proc Inst Mech Eng Part B J Eng Manuf 227:220–234. https://doi.org/10.1177/0954405412467589

    Article  Google Scholar 

  37. Ramana MV, Rao GKM, Rao DH (2014) Optimization and effect of process parameters on tool wear in turning of titanium alloy under different machining conditions. Int J Mater Mech Manuf 2:272–277. https://doi.org/10.7763/IJMMM.2014.V2.141

    Article  Google Scholar 

  38. Sharma J, Sidhu BS (2014) Investigation of effects of dry and near dry machining on AISI D2 steel using vegetable oil. J Clean Prod 66:619–623. https://doi.org/10.1016/j.jclepro.2013.11.042

    Article  Google Scholar 

  39. Deiab I, Raza SW, Pervaiz S (2014) Analysis of lubrication strategies for sustainable machining during turning of titanium Ti-6Al-4V alloy. Procedia CIRP 17:766–771. https://doi.org/10.1016/J.PROCIR.2014.01.112

    Article  Google Scholar 

  40. Abhang LB, Hameedullah M (2014) Parametric investigation of turning process on en-31 steel. Procedia Mater Sci 6:1516–1523. https://doi.org/10.1016/j.mspro.2014.07.132

    Article  Google Scholar 

  41. Rahim EA, Ibrahim MR, Rahim AA, Aziz S, Mohid Z (2015) Experimental investigation of minimum quantity lubrication (MQL) as a sustainable cooling technique. Procedia CIRP 26:351–354. https://doi.org/10.1016/j.procir.2014.07.029

    Article  Google Scholar 

  42. Sun Y, Huang B, Puleo DA, Jawahir IS (2015) Enhanced machinability of Ti-5553 alloy from cryogenic machining: comparison with MQL and flood-cooled machining and modeling. Procedia CIRP 31:477–482. https://doi.org/10.1016/j.procir.2015.03.099

    Article  Google Scholar 

  43. Paturi UMR, Maddu YR, Maruri RR, Narala SKR (2016) Measurement and analysis of surface roughness in WS2 solid lubricant assisted minimum quantity lubrication (MQL) turning of Inconel 718. Procedia CIRP, In

    Book  Google Scholar 

  44. Sharma AK, Tiwari AK, Singh RK, Dixit AR (2016) Tribological investigation of TiO2 nanoparticle based cutting fluid in machining under minimum quantity lubrication (MQL). Mater Today Proc 3:2155–2162. https://doi.org/10.1016/j.matpr.2016.04.121

    Article  Google Scholar 

  45. Zetty Akhtar AM, Rahman MM, Kadirgama K, Maleque MA (2020) Effect of TiO$_{2}$ and Al$_{2}$O$_{3}$-ethylene glycol-based nanofluids on cutting temperature and surface roughness during turning process of AISI 1018. In, Materials Science and Engineering Conference Series, p 52033

    Google Scholar 

  46. Chetan BBC, Ghosh S, Rao PV (2016) Wear behavior of PVD TiN coated carbide inserts during machining of Nimonic 90 and Ti6Al4V superalloys under dry and MQL conditions. Ceram Int 42:14873–14885. https://doi.org/10.1016/j.ceramint.2016.06.124

    Article  Google Scholar 

  47. Kumar S, Singh D, Kalsi NS (2017) Analysis of surface roughness during machining of hardened AISI 4340 steel using minimum quantity lubrication. Mater Today Proc 4:3627–3635. https://doi.org/10.1016/j.matpr.2017.02.255

    Article  Google Scholar 

  48. Bagherzadeh A, Budak E (2018) Investigation of machinability in turning of difficult-to-cut materials using a new cryogenic cooling approach. Tribol Int 119:510–520. https://doi.org/10.1016/J.TRIBOINT.2017.11.033

    Article  Google Scholar 

  49. Vasu V, Pradeep Kumar Reddy G (2011) Effect of minimum quantity lubrication with Al2O3 nanoparticles on surface roughness, tool wear and temperature dissipation in machining Inconel 600 alloy. Proc Inst Mech Eng Part N J Nanoeng Nanosyst 225:3–16. https://doi.org/10.1177/1740349911427520

    Article  Google Scholar 

  50. Mishra RR, Sahoo AK, Panda A, Kumar R, Das D, Routara BC (2020) MQL machining of high strength steel: a case study on surface quality characteristic. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.552

  51. Cetin MH, Ozcelik B, Kuram E, Demirbas E (2011) Evaluation of vegetable based cutting fluids with extreme pressure and cutting parameters in turning of AISI 304L by Taguchi method. J Clean Prod 19:2049–2056. https://doi.org/10.1016/j.jclepro.2011.07.013

    Article  Google Scholar 

  52. Kumar Mishra S, Ghosh S, Aravindan S (2020) Machining performance evaluation of Ti6Al4V alloy with laser textured tools under MQL and nano-MQL environments. J Manuf Process 53:174–189. https://doi.org/10.1016/j.jmapro.2020.02.014

    Article  Google Scholar 

  53. Maheshwera U, Paturi R, Ratnam Y, Reddy R (2016) Measurement and analysis of surface roughness in WS 2 solid lubricant assisted minimum quantity lubrication ( MQL ) turning of Inconel 718. Procedia CIRP 40:138–143. https://doi.org/10.1016/j.procir.2016.01.082

    Article  Google Scholar 

  54. Das A, Patel SK, Biswal BB, Sahoo N, Pradhan A (2020) Performance evaluation of various cutting fluids using MQL technique in hard turning of AISI 4340 alloy steel. Measurement 150:107079. https://doi.org/10.1016/j.measurement.2019.107079

    Article  Google Scholar 

  55. Sun J, Wong YS, Rahman M, Wang ZG, Neo KS, Tan CH, Onozuka H (2006) Effects of coolant supply methods and cutting conditions on tool life in end milling titanium alloy. Mach Sci Technol 10:355–370. https://doi.org/10.1080/10910340600902181

    Article  Google Scholar 

  56. Lacalle D, Angulo C, Lamikiz A (2006) Experimental and numerical investigation of the effect of spray cutting fluids in high speed milling 172:11–15 . https://doi.org/10.1016/j.jmatprotec.2005.08.014

  57. Liao YS, Lin HM (2007) Mechanism of minimum quantity lubrication in high-speed milling of hardened steel. Int J Mach Tools Manuf 47:1660–1666. https://doi.org/10.1016/j.ijmachtools.2007.01.007

    Article  Google Scholar 

  58. Thamizhmanii S, Hasan S (2009) A study of minimum quantity lubrication on Inconel 718 steel. 39:38–44

  59. Thepsonthi T, Hamdi M, Mitsui K (2009) Investigation into minimal-cutting-fluid application in high-speed milling of hardened steel using carbide mills. Int J Mach Tools Manuf 49:156–162. https://doi.org/10.1016/j.ijmachtools.2008.09.007

    Article  Google Scholar 

  60. Li K, Chou S (2010) Experimental evaluation of minimum quantity lubrication in near micro-milling. J Mater Process Technol 210:2163–2170. https://doi.org/10.1016/j.jmatprotec.2010.07.031

    Article  Google Scholar 

  61. da Silva LRR, Souza FCR, Guesser WL, Jackson MJ, Machado AR (2020) Critical assessment of compacted graphite cast iron machinability in the milling process. J Manuf Process 56:63–74. https://doi.org/10.1016/j.jmapro.2020.04.061

    Article  Google Scholar 

  62. Taylor CM, Simpson T, Crawforth P (2020) Resource consumption and process performance in minimum quantity lubricated milling of tool steel. Procedia Manuf 43:463–470. https://doi.org/10.1016/j.promfg.2020.02.187

    Article  Google Scholar 

  63. Zhang S, Li JF, Wang YW (2012) Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. J Clean Prod 32:81–87. https://doi.org/10.1016/j.jclepro.2012.03.014

    Article  Google Scholar 

  64. Shahrom MS, Yahya NM, Yusoff AR (2013) Taguchi method approach on effect of lubrication condition on surface roughness in milling operation. Procedia Eng 53:594–599. https://doi.org/10.1016/j.proeng.2013.02.076

    Article  Google Scholar 

  65. Do TV, Nguyen QM, Pham MT (2020) Optimization of cutting parameters for improving surface roughness during hard milling of AISI H13 steel. Key Eng Mater 831:35–39. https://doi.org/10.4028/www.scientific.net/KEM.831.35

    Article  Google Scholar 

  66. Wang CD, Chen M, An QL, Wang M, Zhu YH (2014) Tool wear performance in face milling Inconel 182 using minimum quantity lubrication with different nozzle positions. Int J Precis Eng Manuf 15:557–565. https://doi.org/10.1007/s12541-014-0371-4

    Article  Google Scholar 

  67. Priarone PC, Robiglio M, Settineri L, Tebaldo V (2014) Milling and turning of titanium Aluminides by using minimum quantity lubrication. Procedia CIRP 24:62–67. https://doi.org/10.1016/J.PROCIR.2014.07.147

    Article  Google Scholar 

  68. Soman A, Shanbhag V, Sakthivel M, Kuppan P (2015) Influence of MQL application on surface roughness, cutting force and tool wear for milling of Monel 400. 118–123

  69. Jang DY, Jung J, Seok J (2016) Modeling and parameter optimization for cutting energy reduction in MQL milling process 3:5–12 . https://doi.org/10.1007/s40684-016-0001-y

  70. de Moraes DL, Garcia MV, Lopes JC, Ribeiro FSF, de Angelo Sanchez LE, Foschini CR, de Mello HJ, Aguiar PR, Bianchi EC (2019) Performance of SAE 52100 steel grinding using MQL technique with pure and diluted oil. Int J Adv Manuf Technol 105:4211–4223. https://doi.org/10.1007/s00170-019-04582-5

    Article  Google Scholar 

  71. da Silva LR, Bianchi EC, Fusse RY, Catai RE, França TV, Aguiar PR (2007) Analysis of surface integrity for minimum quantity lubricant-MQL in grinding. Int J Mach Tools Manuf 47:412–418. https://doi.org/10.1016/j.ijmachtools.2006.03.015

    Article  Google Scholar 

  72. Tawakoli T, Hadad MJ, Sadeghi MH (2010) Investigation on minimum quantity lubricant-MQL grinding of 100Cr6 hardened steel using different abrasive and coolant–lubricant types. Int J Mach Tools Manuf 50:698–708. https://doi.org/10.1016/j.ijmachtools.2010.04.009

    Article  Google Scholar 

  73. Liao YS, Yu YP, Chang CH (2010) Effects of cutting fluid with nano particles on the grinding of titanium alloys 128:353–358 . https://doi.org/10.4028/www.scientific.net/AMR.126-128.353

  74. Sadeghi MH, Hadad MJ, Tawakoli T, Vesali A, Emami M (2010) An investigation on surface grinding of AISI 4140 hardened steel using minimum quantity lubrication-MQL technique. Int J Mater Form 3:241–251. https://doi.org/10.1007/s12289-009-0678-3

    Article  Google Scholar 

  75. Qu S, Gong Y, Yang Y, Wang W, Liang C, Han B (2020) An investigation of carbon nanofluid minimum quantity lubrication for grinding unidirectional carbon fibre-reinforced ceramic matrix composites. J Clean Prod 249:119353. https://doi.org/10.1016/j.jclepro.2019.119353

    Article  Google Scholar 

  76. Kalita P, Malshe AP, Kumar SA, Yoganath VG, Gurumurthy T (2012) Study of specific energy and friction coefficient in minimum quantity lubrication grinding using oil-based nanolubricants. J Manuf Process 14:160–166. https://doi.org/10.1016/j.jmapro.2012.01.001

    Article  Google Scholar 

  77. Setti D, Ghosh S, Rao PV (2012) Application of nano cutting fluid under minimum quantity lubrication ( MQL ) technique to improve grinding of Ti – 6Al – 4V alloy. 6:493–497

  78. Oliveira DDJ, Guermandi LG, Bianchi EC, Diniz AE, De Aguiar PR, Canarim RC (2012) Improving minimum quantity lubrication in CBN grinding using compressed air wheel cleaning. J Mater Process Technol 212:2559–2568. https://doi.org/10.1016/j.jmatprotec.2012.05.019

    Article  Google Scholar 

  79. Balan a SS, Vijayaraghavan L, Krishnamurthy R (2013) Minimum quantity lubricated grinding of Inconel 751 alloy. Mater Manuf Process 28:430–435. https://doi.org/10.1080/10426914.2013.763965

    Article  Google Scholar 

  80. Setti D, Sinha MK, Ghosh S, Rao PV (2014) An investigation into the application of Al2O3nanofluid–based minimum quantity lubrication technique for grinding of Ti–6Al–4V. Int J Precis Technol 4:268–279. https://doi.org/10.1504/IJPTECH.2014.067742

    Article  Google Scholar 

  81. Zhang Y, Li C, Jia D, Zhang D, Zhang X (2015) Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil. J Clean Prod 87:930–940. https://doi.org/10.1016/j.jclepro.2014.10.027

    Article  Google Scholar 

  82. Setti D, Sinha MK, Ghosh S, Venkateswara Rao P (2015) Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids. Int J Mach Tools Manuf 88:237–248. https://doi.org/10.1016/j.ijmachtools.2014.10.005

    Article  Google Scholar 

  83. Lopes JC, Ventura CEH, Rodriguez RL, Talon AG, Volpato RS, Sato BK, de Mello HJ, de Aguiar PR, Bianchi EC (2018) Application of minimum quantity lubrication with addition of water in the grinding of alumina. Int J Adv Manuf Technol 97:1951–1959. https://doi.org/10.1007/s00170-018-2085-8

    Article  Google Scholar 

  84. Rodriguez RL, Lopes JC, Hildebrandt RA, Perez RRV, Diniz AE, de Ângelo Sanchez LE, Rodrigues AR, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Evaluation of grinding process using simultaneously MQL technique and cleaning jet on grinding wheel surface. J Mater Process Technol 271:357–367. https://doi.org/10.1016/j.jmatprotec.2019.03.019

    Article  Google Scholar 

  85. de Jesus OD, Guermandi LG, Bianchi EC, Diniz AE, de Aguiar PR, Canarim RC (2012) Improving minimum quantity lubrication in CBN grinding using compressed air wheel cleaning. J Mater Process Technol 212:2559–2568. https://doi.org/10.1016/j.jmatprotec.2012.05.019

    Article  Google Scholar 

  86. Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, de Mello HJ, da Silva RB, de Aguiar PR (2018) Plunge cylindrical grinding with the minimum quantity lubrication coolant technique assisted with wheel cleaning system. Int J Adv Manuf Technol 95:2907–2916. https://doi.org/10.1007/s00170-017-1396-5

    Article  Google Scholar 

  87. Bianchi EC, Rodriguez RL, Hildebrandt RA, Lopes JC, de Mello HJ, de Aguiar PR, da Silva RB, Jackson MJ (2018) Application of the auxiliary wheel cleaning jet in the plunge cylindrical grinding with minimum quantity lubrication technique under various flow rates. Proc Inst Mech Eng Part B J Eng Manuf 233:1144–1156. https://doi.org/10.1177/0954405418774599

    Article  Google Scholar 

  88. Bianchi EC, Sato BK, Sales AR, Lopes JC, de Mello HJ, de Angelo Sanchez LE, Diniz AE, Aguiar PR (2018) Evaluating the effect of the compressed air wheel cleaning in grinding the AISI 4340 steel with CBN and MQL with water. Int J Adv Manuf Technol 95:2855–2864. https://doi.org/10.1007/s00170-017-1433-4

    Article  Google Scholar 

  89. Lopes JC, Ventura CEH, de M. Fernandes L, Tavares AB, LEA S, de Mello HJ, de Aguiar PR, Bianchi EC (2019) Application of a wheel cleaning system during grinding of alumina with minimum quantity lubrication. Int J Adv Manuf Technol 102:333–341. https://doi.org/10.1007/s00170-018-3174-4

    Article  Google Scholar 

  90. Javaroni RL, Lopes JC, Sato BK, Sanchez LEA, Mello HJ, Aguiar PR, Bianchi EC (2019) Minimum quantity of lubrication (MQL) as an eco-friendly alternative to the cutting fluids in advanced ceramics grinding. Int J Adv Manuf Technol 103:2809–2819. https://doi.org/10.1007/s00170-019-03697-z

    Article  Google Scholar 

  91. Heinemann R, Hinduja S, Barrow G, Petuelli G (2006) Effect of MQL on the tool life of small twist drills in deep-hole drilling. Int J Mach Tools Manuf 46:1–6. https://doi.org/10.1016/j.ijmachtools.2005.04.003

    Article  Google Scholar 

  92. Bhowmick S, Lukitsch MJ, Alpas AT (2010) Dry and minimum quantity lubrication drilling of cast magnesium alloy (AM60). Int J Mach Tools Manuf 50:444–457. https://doi.org/10.1016/J.IJMACHTOOLS.2010.02.001

    Article  Google Scholar 

  93. Rahim EA, Sasahara H (2011) Investigation of tool wear and surface integrity on MQL machining of Ti-6AL-4V using biodegradable oil. In: Proceedings of the institution of mechanical engineers, Part B: Journal of Engineering Manufacture. pp 1505–1511

  94. Rahim EA, Sasahara H (2011) An analysis of surface integrity when drilling inconel 718 using palm oil and synthetic ester under MQL condition. Mach Sci Technol 15:76–90. https://doi.org/10.1080/10910344.2011.557967

    Article  Google Scholar 

  95. Kuram E, Ozcelik B, Demirbas E, Şik E, Tansel IN (2011) Evaluation of new vegetable-based cutting fluids on thrust force and surface roughness in drilling of AISI 304 using Taguchi method. Mater Manuf Process 26:1136–1146. https://doi.org/10.1080/10426914.2010.536933

    Article  Google Scholar 

  96. Biermann D, Iovkov I, Blum H, Rademacher A, Taebi K, Suttmeier FT, Klein N (2012) Thermal aspects in deep hole drilling of aluminium cast alloy using twist drills and MQL. Procedia CIRP 3:245–250. https://doi.org/10.1016/j.procir.2012.07.043

    Article  Google Scholar 

  97. Chatha SS, Pal A, Singh T (2016) Performance evaluation of aluminium 6063 drilling under the influence of nanofluid minimum quantity lubrication. J Clean Prod 137:537–545. https://doi.org/10.1016/J.JCLEPRO.2016.07.139

    Article  Google Scholar 

  98. Klocke F, Eisenblaetter G (1997) Dry cutting. CIRP Ann - Manuf Technol 46:519–526. https://doi.org/10.1016/S0007-8506(07)60877-4

    Article  Google Scholar 

  99. Kamata Y, Obikawa T (2007) High speed MQL finish-turning of Inconel 718 with different coated tools. J Mater Process Technol 192–193:281–286. https://doi.org/10.1016/j.jmatprotec.2007.04.052

    Article  Google Scholar 

  100. Khanna N, Agrawal C, Gupta MK, Song Q, Singla AK (2020) Sustainability and machinability improvement of Nimonic-90 using indigenously developed green hybrid machining technology. J Clean Prod:121402. https://doi.org/10.1016/j.jclepro.2020.121402

  101. Moghaddari M, Yousefi F, Aparicio S, Hosseini SM (2020) Thermal conductivity and structuring of multiwalled carbon nanotubes based nanofluids. J Mol Liq 307:112977. https://doi.org/10.1016/j.molliq.2020.112977

    Article  Google Scholar 

  102. Khatai S, Kumar R, Sahoo AK, Panda A, Das D (2020) Metal-oxide based nanofluid application in turning and grinding processes: A comprehensive review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.360

  103. Choi, S.U.S. ; Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles

  104. Bhogare RA, Kothawale BS (2013) A review on applications and challenges of nano-fluids as coolant in automobile radiator. Int J Sci Res Publ

  105. Wu D, Zhu H, Wang L, Liu L (2009) Critical issues in nanofluids preparation, Characterization characterization and thermal conductivity. Curr Nanosci 5:103–112. https://doi.org/10.2174/157341309787314548

    Article  Google Scholar 

  106. Matijević E (2004) Principles of colloid and surface chemistry. J Colloid Interface Sci 70:399. https://doi.org/10.1016/0021-9797(79)90045-6

    Article  Google Scholar 

  107. Swanson EJ, Tavares J, Coulombe S (2008) Improved dual-plasma process for the synthesis of coated or functionalized metal nanoparticles. IEEE Trans Plasma Sci 36:886–887. https://doi.org/10.1109/TPS.2008.924549

    Article  Google Scholar 

  108. Liu S, Han M (2005) Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: robust bioprobes. Adv Funct Mater 15:961–967. https://doi.org/10.1002/adfm.200400427

    Article  Google Scholar 

  109. Xi S, Zhou J, Li Y, Tung S, Schneider E (2009) A review on development of nanofluid preparation and characterization. Powder Technol 196:89–101. https://doi.org/10.1016/j.powtec.2009.07.025

    Article  Google Scholar 

  110. Yıldırım ÇV, Sarıkaya M, Kıvak T, Şirin Ş (2019) The effect of addition of hBN nanoparticles to nanofluid-MQL on tool wear patterns, tool life, roughness and temperature in turning of Ni-based Inconel 625. Tribiology Int 134:443–456

    Article  Google Scholar 

  111. Bakthavatchalam B, Habib K, Saidur R, Saha BB, Irshad K (2020) Comprehensive study on nanofluid and ionanofluid for heat transfer enhancement: A review on current and future perspective. J Mol Liq 305:112787. https://doi.org/10.1016/j.molliq.2020.112787

    Article  Google Scholar 

  112. Singh RP, Sharma K, Mausam K (2020) Dispersion and stability of metal oxide nanoparticles in aqueous suspension: A review. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.02.439

  113. Dukhin AS, Xu R (2020) Chapter 3.2.5 - Zeta-potential measurements. In: Hodoroaba V-D, Unger WES, Shard AGBT-C of N (eds) Micro and nano technologies. Elsevier, pp 213–224

  114. Rajabi Firoozabadi S, Bonyadi M (2020) A comparative study on the effects of Fe3O4 nanofluid, SDS and CTAB aqueous solutions on the CO2 hydrate formation. J Mol Liq 300:112251. https://doi.org/10.1016/j.molliq.2019.112251

    Article  Google Scholar 

  115. Khooshechin M, Fathi S, Salimi F, Ovaysi S (2020) The influence of surfactant and ultrasonic processing on improvement of stability and heat transfer coefficient of CuO nanoparticles in the pool boiling. Int J Heat Mass Transf 154:119783. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119783

    Article  Google Scholar 

  116. Ghadimi A, Saidur R, HSC M (2011) A review of nanofluid stability properties and characterization in stationary conditions. Int J Heat Mass Transf 54:4051–4068. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.014

    Article  Google Scholar 

  117. Chang H, Jwo CS, Fan PS, Pai SH (2007) Process optimization and material properties for nanofluid manufacturing. Int J Adv Manuf Technol 34:300–306. https://doi.org/10.1007/s00170-006-0597-0

    Article  Google Scholar 

  118. Lee D, Kim JW, Kim BG (2006) A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B 110:4323–4328. https://doi.org/10.1021/jp057225m

    Article  Google Scholar 

  119. Lee K, Hwang Y, Cheong S, Choi Y, Kwon L, Lee J, Kim SH (2009) Understanding the role of nanoparticles in nano-oil lubrication. Tribol Lett 35:127–131. https://doi.org/10.1007/s11249-009-9441-7

    Article  Google Scholar 

  120. Hwang Y, Lee JK, Lee JK, Jeong YM, S ir C, Ahn YC, Kim SH (2008) Production and dispersion stability of nanoparticles in nanofluids. Powder Technol 186:145–153. https://doi.org/10.1016/j.powtec.2007.11.020

    Article  Google Scholar 

  121. Rathakrishnan E (2013) Fundamentals of fluid mechanics. Instrumentation, Measurements, and Experiments in Fluids, In

    Google Scholar 

  122. Mukesh Kumar PC, Palanisamy K, Vijayan V (2020) Stability analysis of heat transfer hybrid/water nanofluids. Mater Today Proc 21:708–712. https://doi.org/10.1016/j.matpr.2019.06.743

    Article  Google Scholar 

  123. Vandsburger L (2010) Synthesis and covalent surface modification of carbon nanotubes for preparation of stabilized nanofluid suspensions. Library and Archives Canada= Bibliothèque et Archives Canada

  124. Assael MJ, Metaxa IN, Arvanitidis J, Christofilos D, Lioutas C (2005) Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants. Int J Thermophys 26:647–664. https://doi.org/10.1007/s10765-005-5569-3

    Article  Google Scholar 

  125. Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2- water based nanofluids. Int J Therm Sci 44:367–373. https://doi.org/10.1016/j.ijthermalsci.2004.12.005

    Article  Google Scholar 

  126. Masuda H, Ebata A, Teramae K, Hishinuma N (2012) Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles. Dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles. Netsu Bussei. https://doi.org/10.2963/jjtp.7.227

  127. Liu MS, Lin MCC, Tsai CY, Wang CC (2006) Enhancement of thermal conductivity with cu for nanofluids using chemical reduction method. Int J Heat Mass Transf 49:3028–3033. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.012

    Article  Google Scholar 

  128. Xuan Y, Li Q (2003) Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf 125:151–155. https://doi.org/10.1115/1.1532008

    Article  Google Scholar 

  129. Li CH, Peterson GP (2006) Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). J Appl Phys 99:084314. https://doi.org/10.1063/1.2191571

    Article  Google Scholar 

  130. Patel HE, Das SK, Sundararajan T, Sreekumaran Nair A, George B, Pradeep T (2003) Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: manifestation of anomalous enhancement and chemical effects. Appl Phys Lett 83:2931–2933. https://doi.org/10.1063/1.1602578

    Article  Google Scholar 

  131. Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q (2002) Thermal conductivity enhancement of suspensions containing nanosized alumina particles. J Appl Phys 91:4568–4572. https://doi.org/10.1063/1.1454184

    Article  Google Scholar 

  132. Yu W, Xie H, Chen L, Li Y (2010) Enhancement of thermal conductivity of kerosene-based Fe3O4nanofluids prepared via phase-transfer method. Colloids Surfaces A Physicochem Eng Asp 355:109–113. https://doi.org/10.1016/j.colsurfa.2009.11.044

    Article  Google Scholar 

  133. Jana S, Salehi-Khojin A, Zhong WH (2007) Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives. Thermochim Acta 462:45–55. https://doi.org/10.1016/j.tca.2007.06.009

    Article  Google Scholar 

  134. Kang HU, Kim SH, Oh JM (2006) Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp Heat Transf 19:181–191. https://doi.org/10.1080/08916150600619281

    Article  Google Scholar 

  135. Wen D, Ding Y (2005) Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J Nanopart Res 7:265–274. https://doi.org/10.1007/s11051-005-3478-9

    Article  Google Scholar 

  136. Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al 2O 3) thermal conductivity enhancement. Appl Phys Lett 87:153107. https://doi.org/10.1063/1.2093936

    Article  Google Scholar 

  137. Hegab H (2018) Towards sustainable machining of difficult-to-cut materials using nano-cutting fluids. University of Ontario Institute of Technology

  138. Tavman S, Tavman IH (1998) Measurement of effective thermal conductivity of wheat as a function of moisture content. Int Commun Heat Mass Transf 25:733–741. https://doi.org/10.1016/S0735-1933(98)00060-8

    Article  Google Scholar 

  139. Ibrahim AMM, Li W, Xiao H, Zeng Z, Ren Y, Alsoufi MS (2020) Energy conservation and environmental sustainability during grinding operation of Ti–6Al–4V alloys via eco-friendly oil/graphene nano additive and minimum quantity lubrication. Tribol Int 150:106387. https://doi.org/10.1016/j.triboint.2020.106387

    Article  Google Scholar 

  140. Minkowycz WJ, Sparrow E, Abraham JP (2016) Nanoparticle heat transfer and fluid flow. CRC press

  141. Timofeeva EV (2011) Nanofluids for heat transfer – potential and engineering strategies. In: Ahsan A (ed) Two phase flow, phase change and numerical modeling. IntechOpen, Rijeka

    Google Scholar 

  142. Chen H, Ding Y, Tan C (2007) Rheological behaviour of nanofluids. New J Phys 9. https://doi.org/10.1088/1367-2630/9/10/367

  143. Lee CG, Hwang YJ, Choi YM, Lee JK, Choi C, Oh JM (2009) A study on the tribological characteristics of graphite nano lubricants. Int J Precis Eng Manuf 10:85–90. https://doi.org/10.1007/s12541-009-0013-4

    Article  Google Scholar 

  144. He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Transf 50:2272–2281. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.024

    Article  MATH  Google Scholar 

  145. Sharma P, Sidhu BS, Sharma J (2015) Investigation of effects of nanofluids on turning of AISI D2 steel using minimum quantity lubrication. J Clean Prod 108:72–79. https://doi.org/10.1016/j.jclepro.2015.07.122

    Article  Google Scholar 

  146. Kumar Sharma A, Kumar Tiwari A, Rai Dixit A, Kumar Singh R (2019) Measurement of machining forces and surface roughness in turning of AISI 304 steel using alumina-MWCNT hybrid nanoparticles enriched cutting fluid. Measurement 107078. https://doi.org/10.1016/j.measurement.2019.107078

  147. Singh G, Gupta M, Sharma VS (2020) Sustainable turning of biocompatible materials using eco nano-mist technique. Key Eng Mater 833:18–22. https://doi.org/10.4028/www.scientific.net/KEM.833.18

    Article  Google Scholar 

  148. Sen B, Mia M, Mandal UK, Mondal SP (2020) Synergistic effect of silica and pure palm oil on the machining performances of Inconel 690: A study for promoting minimum quantity nano doped-green lubricants. J Clean Prod 258:120755. https://doi.org/10.1016/j.jclepro.2020.120755

    Article  Google Scholar 

  149. Said Z, Gupta M, Hegab H, Arora N, Khan AM, Jamil M, Bellos E (2019) A comprehensive review on minimum quantity lubrication (MQL) in machining processes using nano-cutting fluids. Int J Adv Manuf Technol 105:2057–2086. https://doi.org/10.1007/s00170-019-04382-x

    Article  Google Scholar 

  150. Hegab H, Kishawy H (2018) Towards sustainable machining of Inconel 718 using nano-fluid minimum quantity lubrication. J Manuf Mater Process 2:50. https://doi.org/10.3390/jmmp2030050

    Article  Google Scholar 

  151. Hegab H, Kishawy HA, Umer U, Mohany A (2019) A model for machining with nano-additives based minimum quantity lubrication. Int J Adv Manuf Technol 102:2013–2028. https://doi.org/10.1007/s00170-019-03294-0

    Article  Google Scholar 

  152. Yang L, Hu Y (2017) Toward TiO(2) nanofluids-part 1: preparation and properties. Nanoscale Res Lett 12:417. https://doi.org/10.1186/s11671-017-2184-8

    Article  Google Scholar 

  153. Yu W, Xie H (2012) A review on nanofluids: preparation, stability mechanisms, and applications. J Nanomater 2012:435873–435817. https://doi.org/10.1155/2012/435873

    Article  Google Scholar 

  154. Das SK (2006) Nanofluids—the cooling medium of the future. Heat Transf Eng 27:1–2. https://doi.org/10.1080/01457630600904585

    Article  Google Scholar 

  155. Pantzali MN, Mouza AA, Paras SV (2009) Investigating the efficacy of nanofluids as coolants in plate heat exchangers (PHE). Chem Eng Sci 64:3290–3300. https://doi.org/10.1016/j.ces.2009.04.004

    Article  Google Scholar 

  156. Ding G, Peng H, Jiang W, Gao Y (2009) The migration characteristics of nanoparticles in the pool boiling process of nanorefrigerant and nanorefrigerant-oil mixture. Int J Refrig 32:114–123. https://doi.org/10.1016/j.ijrefrig.2008.08.007

    Article  Google Scholar 

  157. He AD, Ye BY, Wang ZY (2014) Experimental effect of cryogenic MQL cutting 304 stainless steel. Key Eng Mater 621:3–8. https://doi.org/10.4028/www.scientific.net/kem.621.3

    Article  Google Scholar 

  158. Chetan GS, Rao PV (2016) Environment friendly machining of Ni–Cr–co based super alloy using different sustainable techniques. Mater Manuf Process 31:852–859. https://doi.org/10.1080/10426914.2015.1037913

    Article  Google Scholar 

  159. Pereira O, Català P, Rodríguez A, Ostra T, Vivancos J, Rivero A, López-de-Lacalle LN (2015) The use of hybrid CO2+MQL in machining operations. Procedia Eng 132:492–499. https://doi.org/10.1016/j.proeng.2015.12.524

    Article  Google Scholar 

  160. Pereira O, Rodríguez A, Barreiro J, Fernández-Abia AI, de Lacalle LNL (2017) Nozzle design for combined use of MQL and cryogenic gas in machining. Int J Precis Eng Manuf Technol 4:87–95. https://doi.org/10.1007/s40684-017-0012-3

    Article  Google Scholar 

  161. Park K-H, Suhaimi MA, Yang G-D, Lee D-Y, Lee S-W, Kwon P (2017) Milling of titanium alloy with cryogenic cooling and minimum quantity lubrication (MQL). Int J Precis Eng Manuf 18:5–14. https://doi.org/10.1007/s12541-017-0001-z

    Article  Google Scholar 

  162. Zou L, Huang Y, Zhou M, Yang Y (2018) Effect of cryogenic minimum quantity lubrication on machinability of diamond tool in ultraprecision turning of 3Cr2NiMo steel. Mater Manuf Process 33:943–949. https://doi.org/10.1080/10426914.2017.1376077

    Article  Google Scholar 

  163. Shokrani A, Al-Samarrai I, Newman ST (2019) Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy. J Manuf Process 43:229–243. https://doi.org/10.1016/j.jmapro.2019.05.006

    Article  Google Scholar 

  164. Alsayyed B, Hamdan MO, Aldajah S (2012) Vortex tube impact on cooling milling machining. 773–776

  165. Lopes JC, Fragoso KM, Garcia MV, Ribeiro FSF, Francelin AP, de Angelo Sanchez LE, Rodrigues AR, de Mello HJ, Aguiar PR, Bianchi EC (2019) Behavior of hardened steel grinding using MQL under cold air and MQL CBN wheel cleaning. Int J Adv Manuf Technol 105:4373–4387. https://doi.org/10.1007/s00170-019-04571-8

    Article  Google Scholar 

  166. Taha Z, Tuan Ya T, Phoon S, Tan C, Akiah M (2013) Vortex tube air cooling: the effect on surface roughness and power consumption in dry turning. Int J Automot Mech Eng 8:1477–1486

    Article  Google Scholar 

  167. Mia M, Singh G, Gupta MKMK, Sharma VS (2018) Influence of Ranque-Hilsch vortex tube and nitrogen gas assisted MQL in precision turning of Al 6061-T6. Precis Eng 53:289–299. https://doi.org/10.1016/j.precisioneng.2018.04.011

    Article  Google Scholar 

  168. Alsayyed, B., Hamdan, M. O., Aldajah S (2012) vortex tube impact on cooling milling machining. In: International Mechanical Engineering Congress & Exposition IMECE2012

  169. Gupta U, Singh R, Parmar S, Gupta P, Pandey V (2017) A proposed method for cooling of conventional machines by vortex tube refrigeration. Int J Innov Res Sci Technol 3:41–47

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the China Post-Doctoral Science Foundation Funded Project (2019TQ0186), National Natural Science Foundation of China (no. 51922066), the Major projects of National Science and Technology (Grant No. 2019ZX04001031), the Natural Science Outstanding Youth Fund of Shandong Province (Grant No. ZR2019JQ19), the National Key Research and Development Program (Grant No. 2018YFB2002201), and the Key Laboratory of High-efficiency and Clean Mechanical Manufacture at Shandong University, Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghua Song.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 6 MQL in turning process
Table 7 MQL in milling processes
Table 8 MQL in grinding process
Table 9 MQL in drilling process
Table 10 Literature summary of the thermal conductivity enhancements for various nanofluids (water-based)
Table 11 Combined applications of MQL with cryogenic gases and RHVT

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Gupta, M.K., Hegab, H. et al. Progress for sustainability in the mist assisted cooling techniques: a critical review. Int J Adv Manuf Technol 109, 345–376 (2020). https://doi.org/10.1007/s00170-020-05529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05529-x

Keywords

Navigation