Skip to main content
Log in

Generic regularity of free boundaries for the obstacle problem

  • Published:
Publications mathématiques de l'IHÉS Aims and scope Submit manuscript

Abstract

The goal of this paper is to establish generic regularity of free boundaries for the obstacle problem in \(\mathbf {R}^{n}\). By classical results of Caffarelli, the free boundary is \(C^{\infty }\) outside a set of singular points. Explicit examples show that the singular set could be in general \((n-1)\)-dimensional—that is, as large as the regular set. Our main result establishes that, generically, the singular set has zero \(\mathcal{H}^{n-4}\) measure (in particular, it has codimension 3 inside the free boundary). Thus, for \(n\leq 4\), the free boundary is generically a \(C^{\infty }\) manifold. This solves a conjecture of Schaeffer (dating back to 1974) on the generic regularity of free boundaries in dimensions \(n\leq 4\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Andersson, E. Lindgren and H. Shahgholian, Optimal regularity for the no-sign obstacle problem, Comm. Pure Appl. Math., 66 (2013), 245–262.

    Article  MathSciNet  Google Scholar 

  2. I. Athanasopoulos, L. Caffarelli and S. Salsa, The structure of the free boundary for lower dimensional obstacle problems, Amer. J. Math., 130 (2008), 485–498.

    Article  MathSciNet  Google Scholar 

  3. C. Baiocchi, Free boundary problems in the theory of fluid flow through porous media, in Proceedings of the ICM, 1974.

    Google Scholar 

  4. H. Brézis and D. Kinderlehrer, The smoothness of solutions to nonlinear variational inequalities, Indiana Univ. Math. J., 23 (1973/1974), 831–844.

  5. Y. D. Burago and V. A. Zallager, Geometric Inequalities, Grundlehren der mathematischen Wissenschaften, vol. 285, Springer, Berlin, 1980.

    Google Scholar 

  6. L. Caffarelli, The regularity of free boundaries in higher dimensions, Acta Math., 139 (1977), 155–184.

    Article  MathSciNet  Google Scholar 

  7. L. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl., 4 (1998), 383–402.

    Article  MathSciNet  Google Scholar 

  8. L. Caffarelli and X. Cabré, Fully Nonlinear Elliptic Equations, American Mathematical Society Colloquium Publications, vol. 43, American Mathematical Society, Providence, 1995.

    MATH  Google Scholar 

  9. L. Caffarelli, L. Karp and H. Shahgholian, Regularity of a free boundary with applications to the Pompeiu problem, Ann. Math., 151 (2000), 269–292.

    Article  MathSciNet  Google Scholar 

  10. L. Caffarelli and N. Rivière, Smoothness and analyticity of free boundaries in variational inequalities, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 3 (1976), 289–310.

    MathSciNet  MATH  Google Scholar 

  11. L. Caffarelli and N. Rivière, Asymptotic behavior of free boundaries at their singular points, Ann. of Math., 106 (1977), 309–317.

    Article  MathSciNet  Google Scholar 

  12. L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425–461.

    Article  MathSciNet  Google Scholar 

  13. S. Choi, D. Jerison and I. Kim, Regularity for the one-phase Hele-Shaw problem from a Lipschitz initial surface, Amer. J. Math., 129 (2007), 527–582.

    Article  MathSciNet  Google Scholar 

  14. M. Colombo, L. Spolaor and B. Velichkov, A logarithmic epiperimetric inequality for the obstacle problem, Geom. Funct. Anal., 28 (2018), 1029–1061.

    Article  MathSciNet  Google Scholar 

  15. G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics, Springer, Berlin, 1976.

    Book  Google Scholar 

  16. L. C. Evans, Partial Differential Equations, 2nd ed., Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, 2010. xxii+749 pp.

    MATH  Google Scholar 

  17. H. Federer, Geometric Measure Theory, Springer, Berlin, 1969.

    MATH  Google Scholar 

  18. C. Fefferman, Extension of \(C^{m,\omega }\)-smooth functions by linear operators, Rev. Mat. Iberoam., 25 (2009), 1–48.

    Article  MathSciNet  Google Scholar 

  19. A. Figalli and J. Serra, On the fine structure of the free boundary for the classical obstacle problem, Invent. Math., 215 (2019), 311–366.

    Article  MathSciNet  Google Scholar 

  20. M. Focardi and E. Spadaro, On the measure and structure of the free boundary of the lower dimensional obstacle problem, Arch. Rat. Mech. Anal., 230 (2018), 125–184.

    Article  MathSciNet  Google Scholar 

  21. A. Friedman, Variational Principles and Free Boundary Problems, Wiley, New York, 1982.

    MATH  Google Scholar 

  22. H. S. H. Shaw, Investigation of the nature of surface resistance of water and of stream-line motion under certain experimental conditions, Inst. NA. (1898).

  23. N. Garofalo and A. Petrosyan, Some new monotonicity formulas and the singular set in the lower dimensional obstacle problem, Invent. Math., 177 (2009), 415–461.

    Article  MathSciNet  Google Scholar 

  24. E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, vol. 80, Birkhäuser, Boston, 1984.

    Book  Google Scholar 

  25. D. Kinderlehrer, How a minimal surface leaves an obstacle, Acta Math., 130 (1973), 221–242.

    Article  MathSciNet  Google Scholar 

  26. D. Kinderlehrer and L. Nirenberg, Regularity in free boundary problems, Ann. Sc. Norm. Sup. Pisa, 4 (1977), 373–391.

    MathSciNet  MATH  Google Scholar 

  27. H. Lewy and G. Stampacchia, On the regularity of the solution of a variational inequality, Comm. Pure Appl. Math., 22 (1969), 153–188.

    Article  MathSciNet  Google Scholar 

  28. J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493–519.

    Article  MathSciNet  Google Scholar 

  29. R. Monneau, On the number of singularities for the obstacle problem in two dimensions, J. Geom. Anal., 13 (2003), 359–389.

    Article  MathSciNet  Google Scholar 

  30. A. Naber and D. Valtorta, Volume estimates on the critical sets of solutions to elliptic PDEs, Comm. Pure Appl. Math., 70 (2017), 1835–1897.

    Article  MathSciNet  Google Scholar 

  31. A. Petrosyan, H. Shahgholian and N. Uraltseva, Regularity of Free Boundaries in Obstacle-Type Problems, Graduate Studies in Mathematics, vol. 136, AMS, Providence, 2012.

    Book  Google Scholar 

  32. J. F. Rodrigues, Obstacle Problems in Mathematical Physics, North-Holland Mathematics Studies, vol. 134, North-Holland Publishing Co., Amsterdam, 1987.

    Book  Google Scholar 

  33. M. Sakai, Regularity of a boundary having a Schwarz function, Acta Math., 166 (1991), 263–297.

    Article  MathSciNet  Google Scholar 

  34. M. Sakai, Regularity of free boundaries in two dimensions, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 20 (1993), 323–339.

    MathSciNet  MATH  Google Scholar 

  35. D. G. Schaeffer, An example of generic regularity for a nonlinear elliptic equation, Arch. Rat. Mech. Anal., 57 (1974), 134–141.

    Article  Google Scholar 

  36. D. Schaeffer, Some examples of singularities in a free boundary, Ann. Scuola Norm. Sup. Pisa, 4 (1976), 131–144.

    Google Scholar 

  37. S. Serfaty, Coulomb Gases and Ginzburg-Landau Vortices, Zurich Lectures in Advanced Mathematics, EMS books, Zürich, 2015.

    Book  Google Scholar 

  38. H. Shahgholian and N. Uraltseva, Regularity properties of a free boundary near contact points with the fix boundary, Duke Math. J., 116 (2003), 1–34.

    Article  MathSciNet  Google Scholar 

  39. L. Simon, Lectures on Geometric Measure Theory, Proc. Centre for Mathematical Analysis, Australian National University, Canberra, 1983.

    MATH  Google Scholar 

  40. N. Smale, Generic regularity of homologically area minimizing hypersurfaces in eight dimensional manifolds, Comm. Anal. Geom., 1 (1993), 217–228.

    Article  MathSciNet  Google Scholar 

  41. G. Weiss, A homogeneity improvement approach to the obstacle problem, Invent. Math., 138 (1999), 23–50.

    Article  MathSciNet  Google Scholar 

  42. B. White, Stratification of minimal surfaces, mean curvature flows, and harmonic maps, J. Reine Angew. Math., 488 (1997), 1–35.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Figalli.

Additional information

AF and JS have received funding from the European Research Council (ERC) under the Grant Agreement No. 721675. XR was supported by the European Research Council (ERC) under the Grant Agreement No. 801867. JS was supported by Swiss NSF Ambizione Grant PZ00P2 180042. XR and JS were supported by MINECO grant MTM2017-84214-C2-1-P (Spain).

The authors are grateful to the anonymous referee for a careful reading and the useful comments.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figalli, A., Ros-Oton, X. & Serra, J. Generic regularity of free boundaries for the obstacle problem. Publ.math.IHES 132, 181–292 (2020). https://doi.org/10.1007/s10240-020-00119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10240-020-00119-9

Navigation