Skip to main content
Log in

Alphabetic-Core Assisted Microstructure Fiber Based Plasmonic Biosensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Light control capability of photonic crystal fiber (PCF) is a unique feature which can be applied to improve biosensing and plasmonic performance. Here, we reported alphabetic-core microstructure fiber-based plasmonic biosensor. Three different alphabetic R-, M-, and S-shaped cores of PCF-based plasmonic microstructures show controllable light propagation to enhance biosensor sensitivity and resolution. The light-guiding properties and sensing performance are investigated numerically using the finite element method (FEM). The proposed R-shaped core (RSC), M-shaped core (MSC), and S-shaped core (SSC) PCF-based plasmonic sensors show the maximum wavelength and amplitude sensitivities of 12,000, 11,000, 10,000 nm/RIU and 478, 533, and 933 RIU−1, respectively, in the refractive index (RI) range of 1.33 to 1.40. The sensors also exhibit promising wavelength resolution of 8.33 × 10−6, 9.09 × 10−6, and 1.0 × 10−6 RIU, with figure of merit (FOM) of 108, 143, and 217 RIU−1 for RSC, MSC, and SSC PCFs, respectively. The tunable sensing performance is also observed in design structures due to controllable light traveling path and their interaction with analytes. The proposed alphabetic-core PCF SPR sensors would be a promising candidate for the application of light controlling, trapping in microscale environment, and biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu Y, Li S, Chen H, Li J, Zhang W (2020) Surface plasmon resonance-induced high sensitivity refractive index sensor with adjustable measurement range based on an evanescent field-enhanced D-shaped five-hole photonic crystal fiber. J Phys D Appl Phys 53(11):115107

    Article  CAS  Google Scholar 

  2. Kaur V, Singh S (2019) A dual-channel surface plasmon resonance biosensor based on a photonic crystal fiber for multianalyte sensing. J Comput Electron:1–10

  3. Portosi V, Laneve D, Falconi MC, Prudenzano F (2019) Advances on photonic crystal fiber sensors and applications. Sensors 19(8):1892

    Article  CAS  Google Scholar 

  4. Wang J, Pei L, Wu L, Wang J, Ruan Z, Zheng J (2019) A polarization-independent SPR sensor based on photonic crystal fiber for low RI detection. Plasmonics:1–7

  5. Azman MF, Mahdiraji GA, Wong WR, Aoni RA, Adikan FRM (2019) Design and fabrication of copper-filled photonic crystal fiber based polarization filters. Appl Opt 58(8):2068–2075

    Article  CAS  Google Scholar 

  6. Rakhshani MR (2020) Optical refractive index sensor with two plasmonic double-square resonators for simultaneous sensing of human blood groups. Photonics Nanostruct Fundam Appl:100768

  7. Jiang L, Zhang Y, Zhang G, Wang C, Zhao X, Hou L, Qi Y (2019) Design of a compact and broadband polarization filter based on a liquid crystal-filled and gold-coated photonic crystal fiber. Plasmonics 14(6):1775–1782

    Article  CAS  Google Scholar 

  8. Rifat AA, Ahmed R, Yetisen AK, Butt H, Sabouri A, Mahdiraji GA, Yun SH, Adikan FM (2017) Photonic crystal fiber based plasmonic sensors. Sensor Actuat B-Chem 243:311–325

    Article  CAS  Google Scholar 

  9. Jiao S, Gu S, Fang H, Yang H (2019) Analysis of dual-core photonic crystal fiber based on surface plasmon resonance sensor with segmented silver film. Plasmonics 14(3):685–693

    Article  CAS  Google Scholar 

  10. Cao S, Shao Y, Wang Y, Wu T, Zhang L, Huang Y, Zhang F, Liao C, He J, Wang Y (2018) Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber. Opt Express 26(4):3988–3994

    Article  CAS  Google Scholar 

  11. Ahmed K, Ahmed F, Roy S, Paul BK, Aktar MN, Vigneswaran D, Islam MS (2019) Refractive index-based blood components sensing in terahertz spectrum. IEEE Sensors J 19(9):3368–3375

    Article  CAS  Google Scholar 

  12. Zhang S, Li J, Li S, Liu Q, Wu J, Guo Y (2018) Surface plasmon resonance sensor based on D-shaped photonic crystal fiber with two micro-openings. J Phys D Appl Phys 51(30):305104

    Article  CAS  Google Scholar 

  13. Chen K, Zhou X, Cheng X, Qiao R, Cheng Y, Liu C, Xie Y, Yu W, Yao F, Sun Z (2019) Graphene photonic crystal fibre with strong and tunable light–matter interaction. Nat Photonics 13(11):754–759

    Article  CAS  Google Scholar 

  14. Liu Y, Li S, Chen H, Li J, Zhang W (2018) High-sensitivity refractive index sensor with tunable detection range based on dual-core resonance effect in gold-coated photonic crystal fibers. J Phys D Appl Phys 52(5):055106

    Article  CAS  Google Scholar 

  15. Monfared YE (2019) Refractive index sensor based on surface plasmon resonance excitation in a d-shaped photonic crystal fiber coated by titanium nitride. Plasmonics:1–8

  16. Rifat AA, Haider F, Ahmed R, Mahdiraji GA, Adikan FM, Miroshnichenko AE (2018) Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt Lett 43(4):891–894

    Article  CAS  PubMed Central  Google Scholar 

  17. An G, Li S, Cheng T, Yan X, Zhang X, Zhou X, Yuan Z (2019) Ultra-stable D-shaped optical fiber refractive index sensor with graphene-gold deposited platform. Plasmonics 14(1):155–163

    Article  CAS  Google Scholar 

  18. Haque E, Hossain MA, Namihira Y, Ahmed F (2019) Microchannel-based plasmonic refractive index sensor for low refractive index detection. Appl Opt 58(6):1547–1554

    Article  CAS  Google Scholar 

  19. Yasli A, Ademgil H, Haxha S, Aggoun A (2019) Multi-channel photonic crystal fiber based surface plasmon resonance sensor for multi-analyte sensing. IEEE Photonics J

  20. Haider F, Aoni RA, Ahmed R, Islam MS, Miroshnichenko AE (2018) Propagation controlled photonic crystal fiber-based plasmonic sensor via scaled-down approach. IEEE Sensors J 19(3):962–969

    Article  Google Scholar 

  21. Islam MS, Islam MR, Sultana J, Dinovitser A, Ng BW-H, Abbott D (2019) Exposed-core localized surface plasmon resonance biosensor. JOSA B 36(8):2306–2311

    Article  CAS  Google Scholar 

  22. Di Palma P, Sansone L, Taddei C, Campopiano S, Iadicicco A, Giordano M (2019) Fiber optic probe based on self-assembled photonic crystal for relative humidity sensing. J Lightwave Technol 37(18):4610–4618

    Article  Google Scholar 

  23. Al Mahfuz M, Mollah MA, Momota MR, Paul AK, Masud A, Akter S, Hasan MR (2019) Highly sensitive photonic crystal fiber plasmonic biosensor: design and analysis. Opt Mater 90:315–321

    Article  CAS  Google Scholar 

  24. Gangwar RK, Amorim VA, Marques P (2019) High performance titanium oxide coated D-shaped optical fiber plasmonic sensor. IEEE Sensors J 19(20):9244–9248

    Article  CAS  Google Scholar 

  25. Haider F, Rifat AA, Ahmed R, Azman MF, Mahdiraji GA, Adikan FM (2020) Mode-multiplex plasmonic sensor for multi-analyte detection. Opt Lett 45(14)

  26. Khalek MA, Chakma S, Ahmed K, Paul BK, Vigneswaran D, Zakaria R (2019) Materials effect in sensing performance based on surface plasmon resonance using photonic crystal fiber. Plasmonics 14(4):861–867

    Article  Google Scholar 

  27. Griffiths MB, Pallister PJ, Mandia DJ, Barry ST (2016) Atomic layer deposition of gold metal. Chem Mater 28(1):44–46

    Article  CAS  Google Scholar 

  28. Leon-Saval SG, Argyros A, Bland-Hawthorn J (2010) Photonic lanterns: a study of light propagation in multimode to single-mode converters. Opt Express 18(8):8430–8439

    Article  CAS  Google Scholar 

  29. Hohenester U (2020) Diffraction limit and beyond. In: Nano and Quantum Optics. Springer, pp 115–137

  30. Chen N, Chang M, Lu X, Zhou J, Zhang X (2019) Photonic crystal fiber plasmonic sensor based on dual optofluidic channel. Sensors 19(23):5150

    Article  CAS  Google Scholar 

  31. Han B, Zhang Y-N, Wang X, Yang D, Liu Y, Sun J, Wang Y (2019) High-sensitive fiber anemometer based on surface plasmon resonance effect in photonic crystal fiber. IEEE Sensors J 19(9):3391–3398

    Article  CAS  Google Scholar 

  32. Wang J, Pei L, Wang J, Ruan Z, Zheng J, Li J (2019) Surface plasmon resonance sensor for low refractive index detection based on microstructured fiber. JOSA B 36(11):3104–3110

    Article  CAS  Google Scholar 

  33. Shanthi M, Seyezhai R (2019) Investigation and performance studies of optical properties of nanocomposite spiral-shaped photonic crystal fiber (S-PCF). Plasmonics:1–9

  34. Li T, Zhu L, Yang X, Lou X, Yu L (2020) A refractive index sensor based on H-shaped photonic crystal fibers coated with Ag-graphene layers. Sensors 20(3):741

    Article  Google Scholar 

  35. Bing P, Huang S, Sui J, Wang H, Wang Z (2018) Analysis and improvement of a dual-core photonic crystal fiber sensor. Sensors 18(7):2051

    Article  CAS  Google Scholar 

  36. Luan N, Zhao L, Lian Y, Lou S (2018) A high refractive index plasmonic sensor based on D-shaped photonic crystal fiber with laterally accessible hollow-core. IEEE Photonics J 10(5):1–7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajib Ahmed.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, F., Aoni, R.A., Ahmed, R. et al. Alphabetic-Core Assisted Microstructure Fiber Based Plasmonic Biosensor. Plasmonics 15, 1949–1958 (2020). https://doi.org/10.1007/s11468-020-01220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-020-01220-9

Keywords

Navigation