Skip to main content
Log in

Structural Transformations of Ni1 – xCuxFe2O4 Nanoparticles Depending on the Number of Cu Ions

  • LOW-DIMENSIONAL SYSTEMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Changes in the structure and properties of the Ni1 – xCuxFe2O4 ferrites-spinel magnetic nanoparticles depending on the Cu ion concentration (0 ≤ x ≤ 1.0) have been studied using Mossbauer spectroscopy. It has been found that, with the increasing of the Cu ion concentration, the structure of nanoparticles changes from the structure of reverse spinel (NiFe2O4) to that of mixed spinel (CuFe2O4). It has been shown that the hydrothermal synthesis method makes it possible to obtain single-phase nanoscale particles with a very narrow size distribution and ideal magnetic ordering, which are promising for biomedical applications. The relationship between the distribution of cations on sublattices, the value of the inversion parameter, and the Cu ion concentration has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Ch. M. Hussain, Handbook of Nanomaterials for Industrial Applications (Elsevier, Amsterdam, 2018), p. 709.

    Google Scholar 

  2. Zhu Kai, Ju Yanmin, Xu Junjie, Yang Ziyu, Gao Song, and Hou Yanglong, Acc. Chem. Res. 51, 404 (2018).

    Google Scholar 

  3. Clinical Applications of Magnetic Nanoparticles, Ed. by Nguyen T. K. Thanh (CRC, Taylor and Francis Group, 2018), p. 495.

    Google Scholar 

  4. N. D. Thorat, S. A. M. Tofail, B. von Rechenberg, H. Townley, G. Brennan, Ch. Silien, H. M. Yadav, Th. Steffen, and J. Bauer, Appl. Phys. Rev. 6, 041306 (2019).

    ADS  Google Scholar 

  5. M. Arif, B. T. Tahir, Z. Sara, Z. Fatima, W. Sulayman, R. Mahmood, Q. M. Husain, and Q. A. Mahmood, J. Nanotechnol., 1098765 (2017).

  6. Yu. I. Golovin, N. L. Klyachko, A. G. Mazhuga, S. L. Gribanovskii, D. Yu. Golovin, A. O. Zhigachev, A. V. Shuklinov, M. V. Efremova, M. M. Veselov, K. Yu. Vlasova, A. D. Usvaliev, I. M. Le-Deygen, and A. V. Kabanov, Nanotechnol. Russ. 13, 215 (2018).

    Google Scholar 

  7. Handbook of Nanomaterials Properties, Ed. by B. Bhushan, D. Luo, S. R. Schricker, W. Sigmund, and S. Zauscher (Springer, Berlin, Heidelberg, 2014).

    Google Scholar 

  8. N. Masunga, O. Kelebogile Mmelesi, K. K. Kefenia, and Bh. B. Mamba, J. Environ. Chem. Eng. 7, 103179 (2019).

    Google Scholar 

  9. K. K. Kefeni, T. A. M. Msagati, and Bh. B. Mamba, Mater. Sci. Eng. B 215, 37 (2017).

    Google Scholar 

  10. M. Siddique and N. M. Butt, Phys. B (Amsterdam, Neth.) 405, 4211 (2010).

  11. J. C. de la Rosa Mercè Segarra, ACS Omega 4, 18289 (2019).

    Google Scholar 

  12. V. I. Simagina, O. V. Komova, G. V. Odegova, O. V. Netskina, O. A. Bulavchenko, A. A. Pochtar’, and N. L. Kail’, Russ. J. Appl. Chem. 92, 20 (2019).

    Google Scholar 

  13. R. Zhang, Q. Yuan, R. Ma, X. Liu, C. Gao, M. Liu, Ch.-L. Jiaac, and H. Wang, RSC Adv. 7, 21926 (2017).

  14. D. Pajic, K. Zadro, R. E. Vandenberghe, and I. Nedkov, J. Magn. Magn. Mater. 281, 353 (2004).

    ADS  Google Scholar 

  15. V. Sepelak, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F. J. Litterst, I. Bergmann, and K. D. Becker, Chem. Mater. 18, 3057 (2006).

    Google Scholar 

  16. J. G. Ovejero, A. Mayoral, M. Cañete, M. García, A. Hernando, and P. Herrasti, J. Nanosci. Nanotechnol. 19, 4888 (2019).

    Google Scholar 

  17. I. M. Rashad and O. A. Fouad, Mater. Chem. Phys. 94, 365 (2005).

    Google Scholar 

  18. N. A. Alghamdi, J. H. Hankiewicz, N. R. Anderson, K. F. Stupic, R. E. Camley, M. Przybylski, J. Żukrowski, and Z. Celinski, Phys. Rev. Appl. 9, 054030 (2018).

    ADS  Google Scholar 

  19. F. Tudorache, Superlatt. Microstruct. 116, 131 (2018).

    ADS  Google Scholar 

  20. A. Pradeep, P. Priyadharsini, and G. Chandrasekaran, Mater. Chem. Phys. 112, 572 (2008).

    Google Scholar 

  21. H. Xianghui and C. Zhenhua, Mater. Res. Bull. 40, 105 (2005).

    Google Scholar 

  22. M. George, A. M. John, S. S. Nair, P. A. Joy, and M. R. Anantharaman, J. Magn. Magn. Mater. 302, 190 (2006).

    ADS  Google Scholar 

  23. H. Nathani and R. D. K. Misra, Mater. Sci. Eng. B 113, 228 (2004).

    Google Scholar 

  24. P. I. Siafaka, N. Üstündag Okur, E. Karavas, and D. N. Bikiaris, Int. J. Mol. Sci. 17, 1440 (2016).

    Google Scholar 

  25. M. A. Ahmed, S. F. Mansour, and M. Afifi, J. Magn. Magn. Mater. 324, 4 (2012).

    ADS  Google Scholar 

  26. R. Sridhar, D. Ravinder, and K. Vijaya Kumar, Adv. Mater. Phys. Chem. 2, 192 (2012).

    Google Scholar 

  27. G. R. Kumar, K. V. Kumar, and Y. Ch. Venudhar, Mater. Sci. Appl. 3, 87 (2012).

    Google Scholar 

  28. A. M. Balagurov, I. A. Bobrikov, M. S. Mashchenko, D. Sangaa, and V. G. Simkin, Crystallogr. Rep. 58, 710 (2013).

    ADS  Google Scholar 

  29. M. M. Kothawale, R. B. Tangsali, Sh. S. Meena, N. K. Prasad, and A. Gangwar, J. Supercond. Novel Magn. 32, 2141 (2019).

    Google Scholar 

  30. M. A. Gabal, Y. M. Al Angari, and M. W. Kadi, Polyhedron 30, 1185 (2011).

    Google Scholar 

  31. X. Y. Tan, G. Y. Li, Y. Zhao, and C. W. Hu, Mater. Res. Bull. 44, 2160 (2009).

    Google Scholar 

  32. D. R. Patil and B. K. Chougule, Mater. Chem. Phys. 117, 35 (2009).

    Google Scholar 

  33. R. Sridhar, D. Ravinder, and K. Vijaya Kumar, Int. J. Eng. Res. Appl. 3, 2021 (2013).

    Google Scholar 

  34. A. Bingolbali, N. Doǧan, Z. Yeşil, and M. Asiltürk, J. Magn. Magn. Mater. 373, 222 (2015).

    ADS  Google Scholar 

  35. K. Pubby, S. S. Meena, S. M. Yusuf, and S. Bindra Narang, J. Magn. Magn. Mater. 466, 430 (2018).

    ADS  Google Scholar 

  36. J. D. Arboleda, O. Arnache, M. H. Aguirre, R. Ramos, A. Anadun, and M. R. Ibarra, Solid State Commun. 270, 140 (2018).

    ADS  Google Scholar 

  37. A. Muthusamy, M. Arunkumar, N. Kannapiran, Sh. S. Meena, S. M. Yusuf, and J. Mater, Sci. Mater. Electron. 28, 15754 (2017).

    Google Scholar 

  38. J. Kurian and M. J. Mathew, J. Magn. Magn. Mater. 451, 121 (2018).

    ADS  Google Scholar 

  39. E. Prince and R. G. Treuting, Acta Crystallogr. 9, 1025 (1956).

    Google Scholar 

  40. A. S. Kamzin and N. Wakiya, Phys. Solid State 60, 2608 (2018).

    ADS  Google Scholar 

  41. T. J. Daou, G. Pourroy, S. Begin, J. M. Greneche, C. Ulhaq-Bouillet, P. Legare, P. Bernhardt, C. Leuvrey, and G. Rogez, Chem. Mater. 18, 4399 (2006).

    Google Scholar 

  42. V. Sepelak, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F. J. Litterst, S. J. Campbell, and K. D. Becker, J. Phys. Chem. C 111, 5026 (2007).

    Google Scholar 

  43. Ch. A. Gorski and M. M. Scherer, Am. Mineralog. 95, 1017 (2010).

    ADS  Google Scholar 

  44. Z. K. Heiba, M. B. Mohamed, L. Arda, and N. Dogan, J. Magn. Magn. Mater. 391, 195 (2015).

    ADS  Google Scholar 

  45. V. G. Semenov and V. V. Panchuk, private commun.

  46. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction, 3rd ed. (Prentice-Hall, New Jersey, 2001), p. 167.

    Google Scholar 

  47. G. Márquez, V. Sagredo, and R. Guillen-Guillen, IEEE Trans. Mag. 55, 5400207 (2019).

    Google Scholar 

  48. A. Rais, K. Taibi, A. Addou, A. Zanoun, and Y. Al-Douri, Ceram. Int. 40, 14413 (2014).

    Google Scholar 

  49. J. C. de la Rosa and M. Segarra, ACS Omega 4, 18289 (2019).

    Google Scholar 

  50. S. Kanagesan, M. Hashim, S. A. B. Aziz, I. Ismail, S. Tamilselvan, N. B. Alitheen, M. K. Swamy, and B. Purna Chandra Rao, Appl. Sci. 6, 184 (2016).

    Google Scholar 

  51. A. Lassoued, M. S. Lassoued, F. Karolak, S. García Granda, B. Dkhil, S. Ammar, and A. Gadri, J. Mater. Sci.: Mater. Electron. 28, 18480 (2017).

    Google Scholar 

  52. J. Jacob and M. A. Khadar, J. Appl. Phys. 107, 114310 (2010).

    ADS  Google Scholar 

  53. M. De Marco, X. W. Wang, R. L. Snyder, J. Simmens, S. Bayya, M. White, and M. J. Naughton, J. Appl. Phys. 73, 6287 (1993).

    ADS  Google Scholar 

  54. J. S. Baijal, D. Kothari, and S. Phanjoubam, Solid State Commun. 69, 277 (1989).

    ADS  Google Scholar 

  55. A. S. Albuquerque, J. D. Ardisson, W. A. A. Macedo, J. L. Lopez, R. Paniago, and A. I. C. Persiano, J. Magn. Magn. Mater. 226–230, 379 (2001).

    Google Scholar 

  56. A. Lassoued, M. S. Lassoued, B. Dkhil, S. Ammar, and A. Gadri, J. Magn. Magn. Mater. 476, 124 (2019).

    ADS  Google Scholar 

  57. M. H. Mahmoud, A. M. Elshahawy, S. A. Makhlouf, and H. H. Hamdeh, J. Magn. Magn. Mater. 343, 21 (2013).

    ADS  Google Scholar 

  58. S. S. R. Inbanathan, V. Vaithyanathan, J. Arout Chelvane, G. Markandeyulu, and K. Kamala Bharathi, J. Magn. Magn. Mater. 353, 41 (2014).

    ADS  Google Scholar 

  59. M K. Anupama, N. Srinatha, Sh. Matteppanavar, B. Angadi, B. Sahoo, and B. Rudraswamy, Ceram. Int. 44, 4946 (2018).

    Google Scholar 

  60. V. Sepelak, I. Bergmann, A. Feldhoff, P. Heitjans, F. J. Litterst, and K. D. Becker, Hyperfine Interact. 165, 81 (2005).

    ADS  Google Scholar 

  61. J. Z. Msomi and T. Moyo, Hyperfine Interact. 176, 93 (2007).

    ADS  Google Scholar 

  62. M. N. B. Silva, J. G. dos S. Duque, D. X. Gouveia, J. A. C. de Paiva, and M. A. Macedo, Jpn. J. Appl. Phys. 43, 5249 (2004).

    ADS  Google Scholar 

  63. M. A. F. Ramalho, L. Gama, S. G. Antonio, C. O. Paiva-Santos, E. J. Miola, R. H. G. A. Kiminami, and A. C. F. M. Costa, Mater. Sci. 42, 3603 (2007).

    ADS  Google Scholar 

  64. Chandan Upadhyay, H. C. Verma, and S. Anand, J. Appl. Phys. 95, 5746 (2004).

    ADS  Google Scholar 

  65. T. P. Poudel, B. K. Rai, S. Yoon, D. Guragain, D. Neupane, and S. R. Mishra, J. Alloys Compd. 802, 609 (2019).

    Google Scholar 

  66. S. Singhal and K. Chandra, J. Solid State Chem. 180, 296 (2007).

    ADS  Google Scholar 

  67. J. Msomi and Th. Moyo, J. Magn. Magn. Mater. 321, 1246 (2009).

    ADS  Google Scholar 

  68. V. Sepelak, D. Baabe, and K. D. Becker, J. Mater. Synth. Proc. 8, 33 (2000).

    Google Scholar 

  69. A. H. Morrish and K. Haneda, J. Appl. Phys. 52, 2496 (1981).

    ADS  Google Scholar 

  70. J. A. C. de Paiva, M. P. F. Graca, J. Monteriro, M. A. Macedo, and M. A. Valente, J. Alloys Compd. 485, 637 (2009).

    Google Scholar 

  71. K. B. Modi, P. Y. Raval, S. J. Shah, Ch. R. Kathad, S. V. Dulera, M. V. Popat, K. B. Zankat, K. G. Saija, T. K. Pathak, N. H. Vasoya, V. K. Lakhani, U. Chandra, and P. K. Jha, Inorg. Chem. 54, 1543 (2015).

    Google Scholar 

  72. G. F. Goya, H. R. Rechenberg, and J. Z. Jiang, J. Appl. Phys. 84, 1101 (1998).

    ADS  Google Scholar 

  73. K. B. Modi, P. Y. Raval, S. V. Dulera, C. R. Kathad, S. J. Shah, U. N. Trivedi, and U. Chandra, AIP Conf. Proc. 1665, 130011 (2015).

    Google Scholar 

  74. J. Z. Msomi and T. Moyo, Hyperfine Interact. 189, 151 (2009).

    ADS  Google Scholar 

  75. J. B. Goodenough and A. L. Loeb, Phys. Rev. 98, 391 (1955).

    ADS  Google Scholar 

  76. V. Sepelak, A. Buchal, K. Tkacova, and K. D. Becker, Mater. Sci. Forum 278–281, 862 (1998).

    Google Scholar 

  77. K. Haneda, Can. J. Phys. 65, 12 (1987).

    Google Scholar 

  78. A. S. Kamzin, A. Bingolbali, N. Dogan, Z. Yesil, and M. Asilturk, Tech. Phys. Lett. 45, 1008 (2019).

    ADS  Google Scholar 

  79. J. D. Arboleda, O. Arnache, M. H. Aguirre, R. Ramos, A. Anadón, and M. R. Ibarra, Solid State Commun. 270, 140 (2018).

    ADS  Google Scholar 

  80. M. Liu, L. Ming, L. Wang, X. Shichong, J. Zhao, and H. Li, J. Mater. Sci. 51, 5487 (2016).

    ADS  Google Scholar 

  81. Shyamaldas, M. Bououdina, and C. Manoharan, J. Magn. Magn. Mater. 493, 165703 (2020).

    Google Scholar 

  82. G. A. Sawatzky, F. van der Woude, and A. H. Morrish, Phys. Rev. 183, 383 (1969).

    ADS  Google Scholar 

  83. V. Sepelak, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F. J. Litterst, and K. D. Necker, J. Magn. Magn. Mater. 257, 377 (2003).

    ADS  Google Scholar 

  84. Kurikka V. P. M. Shafi, Y. Koltypin, A. Gedanken, R. Prozorov, J. Balogh, J. Lendvai, and I. Felner, J. Phys. Chem. B 101, 6409 (1997).

    Google Scholar 

  85. V. K. Mittal, P. Chandramohan, B. Santanu, M. P. Srinivasan, S. Velmurugan, and S. V. Narasimhan, Solid State Commun. 137, 6 (2006).

    ADS  Google Scholar 

  86. E. Agouriane, B. Rabi, A. Essoumhi, A. Razouk, M. Sahlaoui, B. F. O. Costa, and M. Sajieddine, J. Mater. Environ. Sci. 7, 4116 (2016).

    Google Scholar 

  87. M. A. Gilleo, J. Phys. Chem. Solids 13, 33 (1960).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors (A. Bingolbali and N. Dogan) thank the Turkish Technological Research Council (TUBITA, projects no.115E776 and 115E777) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Kamzin.

Ethics declarations

The authors state that there is no conflicts of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamzin, A.S., Valiullin, A.A., Bingolbali, A. et al. Structural Transformations of Ni1 – xCuxFe2O4 Nanoparticles Depending on the Number of Cu Ions. Phys. Solid State 62, 1231–1239 (2020). https://doi.org/10.1134/S1063783420070070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420070070

Keywords:

Navigation