Skip to main content
Log in

Thermal, Magnetic, and Magnetotransport Properties of a Rapidly Quenched Ni50Mn35Al2Sn13 Tape Sample

  • THERMAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The heat capacity, thermal diffusivity, thermal conductivity, magnetization, and electrical resistance of the rapidly quenched Ni50Mn35Al2Sn13 alloy have been studied. Pronounced anomalies in the form of minima associated with magnetic and magnetostructural transformations have been observed on the temperature dependence of the thermal diffusivity. The behavior of thermal conductivity and thermal diffusivity indicates that the free path of heat carriers is limited by structural imperfections of the tape. The transition of the sample to the martensitic phase is accompanied by a sharp increase in electrical resistance, suggesting increasing the electron relaxation rate on structural distortions inherent in martensite. The magnitude of the magnetoresistive effect Δρ/ρ0 in a field of 1.8 T near the martensitic transition reaches 40%. A temperature hysteresis, indicating the structural heterogeneity of the austenitic phase, was detected on the dependence of ρ(T) near TC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, and K. Oikawa, Appl. Phys. Lett. 85, 4358 (2004).

    Article  ADS  Google Scholar 

  2. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Nat. Mater. 4, 450 (2005).

    Article  ADS  Google Scholar 

  3. Yu. V. Kaletina, E. G. Gerasimov, V. A. Kazantsev, and A. Yu. Kaletin, Phys. Solid State 59, 2002 (2017).

    Article  ADS  Google Scholar 

  4. S. Aksoy, M. Acet, P. P. Deen, L. Mañosa, and A. Planes, Phys. Rev. B 79, 212401 (2009).

    Article  ADS  Google Scholar 

  5. T. Krenke, M. Acet, E. Wassermann, X. Moya, L. Ma-ñosa, and A. Planes, Phys. Rev. B 72, 014412 (2005).

    Article  ADS  Google Scholar 

  6. T. L. Phan, P. Zhang, N. H. Dan, N. H. Yen, P. T. Thanh, T. D. Thanh, M. H. Phan, and S. C. Yu, Appl. Phys. Lett. 101, 212403 (2012).

    Article  ADS  Google Scholar 

  7. R. Caballero-Flores, L. González-Legarreta, W. O. Ro-sa, T. Sánchez, V. M. Prida, Ll. Escoda, J. J. Suñol, A. B. Batdalov, A. M. Aliev, V. V. Koledov, V. G. Shavrov, and B. Hernando, J. Alloys Compd. 629, 332 (2015).

    Article  Google Scholar 

  8. A. M. Aliev, A. B. Batdalov, I. K. Kamilov, V. V. Koledov, V. G. Shavrov, V. D. Buchelnikov, J. Garcia, V. M. Prida, and B. Hernando, Appl. Phys. Lett. 97, 212505 (2010).

    Article  ADS  Google Scholar 

  9. D. Wu, S. Xue, J. Frenzel, G. Eggeler, Q. Zhai, and H. Zheng, Mater. Sci. Eng. A 534, 568 (2012).

    Article  Google Scholar 

  10. Y. B. Yang, X. B. Ma, X. G. Chen, J. Z. Wei, R. Wu, J. Z. Han, H. L. Du, C. S. Wang, S. Q. Liu, Y. C. Yang, Y. Zhang, and J. B. Yang, J. Appl. Phys. 111, 07A916 (2012).

  11. A. Banerjee, P. Chaddah, S. Dash, K. Kumar, and A. Lakhani, Phys. Rev. B 84, 214420 (2011).

    Article  ADS  Google Scholar 

  12. R. Das, S. Sarma, A. Perumal, and A. Srinivasan, J. Appl. Phys. 109, 07A901 (2011).

  13. S. Pramanick, S. Chatterjee, S. Giri, and S. Majumdar, Appl. Phys. Lett. 105, 112407 (2014).

    Article  ADS  Google Scholar 

  14. V. K. Sharma, M. K. Chattopadhyay, R. Kumar, T. Ganguli, P. Tiwari, and S. B. Roy, J. Phys.: Condens. Matter 19, 496207 (2007).

    Google Scholar 

  15. S. M. Podgornykh, E. G. Gerasimov, N. V. Mushnikov, and T. Kanomata, J. Phys.: Conf. Ser. 266, 012004 (2011).

    Google Scholar 

  16. A. Quintana-Nedelcos, J. L. Sanchez Llamazares, and G. Daniel-Perez, J. Magn. Magn. Mater. 441, 188 (2017).

    Article  ADS  Google Scholar 

  17. W. Wang, H. Li, J. Ren, J. Fu, Q. Zhai, Z. Luo, and H. Zheng, J. Magn. Magn. Mater. 374, 153 (2015).

    Article  ADS  Google Scholar 

  18. H. C. Xuan, Y. Deng, D. H. Wang, C. L. Zhang, Z. D. Han, and Y. W. Du, J. Phys. D 41, 215002 (2008).

    Article  ADS  Google Scholar 

  19. B. Weise, B. Dutta, N. Teichert, A. Hutten, T. Hickel, and A. Waske, Sci. Rep. 8, 9147 (2018).

    Article  ADS  Google Scholar 

  20. H. Y. Nguyen, T. M. Nguyen, M. Q. Vu, T. T. Pham, D. T. Tran, H. D. Nguyen, L. T. Nguyen, H. H. Nguyen, V. Koledov, A. Kamantsev, A. Mashirov, and H. D. Nguyen, Adv. Nat. Sci.: Nanosci. Nanotechnol. 9, 025007 (2018).

    ADS  Google Scholar 

  21. L. Chen, F. X. Hu, J. Wang, L. F. Bao, X. Q. Zheng, L. Q. Pan, J. H. Yin, J. R. Sun, and B. G. Shen, J. Alloys Compd. 549, 170 (2013).

    Article  Google Scholar 

  22. S. Louidi, J. J. Sunol, M. Ipatov, and B. Hernando, J. Alloys Compd. 739, 305 (2018).

    Article  Google Scholar 

  23. T. D. Thanh, N. H. Duc, N. H. Dan, N. T. Mai, T. L. Phan, S. K. Oh, and S. C. Yu, J. Alloys Compd. 696, 1129 (2017).

    Article  Google Scholar 

  24. A. Planes, L. Mañosa, and M. Acet, J. Phys.: Condens. Matter 21, 233201 (2009).

    ADS  Google Scholar 

  25. T. Krenke, X. Moya, S. Aksoy, M. Acet, P. Entel, Ll. Manosa, A. Planes, Y. Elerman, A. Yucel, and E. F. Wassermann, J. Magn. Magn. Mater. 310, 2788 (2007).

    Article  ADS  Google Scholar 

  26. Y. K. Kuo, K. M. Sivakumar, H. C. Chen, J. H. Su, and C. S. Sue, Phys. Rev. B 72, 054116 (2005).

    Article  ADS  Google Scholar 

  27. P. Czaja, J. Przewoźnik, Ł. Gondek, L. Hawelek, A. Żywczak, and E. Zschech, J. Magn. Magn. Mater. 421, 19 (2017).

    Article  ADS  Google Scholar 

  28. M. Seredina, M. Lyange, V. Khovaylo, S. Taskaev, H. Miki, T. Takagi, R. Singh, R. Chatterjee, and L. K. Varga, Mater. Sci. Forum 845, 65 (2016).

    Article  Google Scholar 

Download references

Funding

The work was carried out with the financial support of the RFBR grant no. 19-08-00782, as well as in the framework of the state task no. AAAA–A17-117021310366-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. K. Khizriev.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by N. Petrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khizriev, S.K., Gamzatov, A.G., Batdalov, A.B. et al. Thermal, Magnetic, and Magnetotransport Properties of a Rapidly Quenched Ni50Mn35Al2Sn13 Tape Sample. Phys. Solid State 62, 1280–1284 (2020). https://doi.org/10.1134/S1063783420070082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420070082

Keywords:

Navigation