Skip to main content
Log in

Effect of Nanoconfinement on the Kinetics of Phase Transitions in Organic Ferroelectric DIPAI

  • FERROELECTRICITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Linear and nonlinear dielectric properties of new organic ferroelectric diisopropylammonia iodide (DIPAI) introduced into porous aluminum oxide films have been studied in comparison with the properties of a bulk DIPAI. In DIPAI, in pores 300 and 60 nm in diameter, it has been found that the ferroelectric phase forms on heating and on cooling in the temperature range between two structural phase transitions above room temperature. No marked temperature hysteresis is observed for both the phase transitions. The boundaries of the intermediate polar phase in the nanostructured DIPAI is shown to shift to lower temperatures as the pore size decreases. For the bulk DIPAI, two structural transitions are observed on heating with the formation of an intermediate polar phase and only one transition below which the ferroelectricity forms is observed on cooling. This transition temperature is significantly lower than the corresponding temperature on heating. It is assumed that the observed differences of the phase transition in DIPAI in pores and in the bulk DIPAI are related to an acceleration of the kinetics of the phase transitions in the nanoconfinement conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Physics of Ferroelectrics. A Modern Perspective, Ed. by K. M. Rabe, C. H. Ahn, and J.-M. Triscone (Springer, Berlin, 2007).

    Google Scholar 

  2. D.-W. Fu, W. Zhang, H.-L. Cai, J.-Z. Ge, Y. Zhang, and R.-G. Xiong, Adv. Mater. 23, 5658 (2011).

    Article  Google Scholar 

  3. D.-W. Fu, H.-L. Cai, Y. Liu, Q. Ye, W. Zhang, Y. Zhang, X.-Y. Chen, G. Giovannetti, M. Capone, J. Li, and R.-G. Xiong, Science (Washington, DC, U. S.) 339, 425 (2013).

    Article  ADS  Google Scholar 

  4. A. Piecha, A. Gągor, R. Jakubas, and P. Szklarz, Cryst. Eng. Commun. 15, 940 (2013).

    Article  Google Scholar 

  5. S. V. Baryshnikov, E. V. Charnaya, A. Yu. Milinskiy, V. A. Parfenov, and I. V. Egorova, Phase Trans. 91, 293 (2018).

    Article  Google Scholar 

  6. S. V. Baryshnikov, A. Y. Milinskii, E. V. Charnaya, and I. V. Egorova, Phys. Solid State 61, 134 (2019).

    Article  ADS  Google Scholar 

  7. A. Y. Milinskii, S. V. Baryshnikov, E. V. Charnaya, I. V. Egorova, and H. T. Nguyen, J. Phys: Condens. Matter 31, 485704 (2019).

    Google Scholar 

  8. N. I. Uskova, E. V. Charnaya, D. Yu. Podorozhkin, S. V. Baryshnikov, A. Yu. Milinskiy, I. V. Egorova, and D. Yu. Nefedov, Appl. Magn. Reson. 51, 129 (2020).https://doi.org/10.1007/s00723-019-01168-y

  9. R. K. Saripalli, S. Diptikanta, S. Prasad, H. Nhalil, H. L. Bhat, T. N. Guru Row, and E. Suja, J. Appl. Phys. 121, 114101 (2017).

    Article  ADS  Google Scholar 

  10. A. Piecha-Bisiorek, A. Gągor, D. Isakov, P. Zieliński, M. Gałązka, and R. Jakuba, Inorg. Chem. Front. 4, 553 (2017).

    Article  Google Scholar 

  11. A. Yu. Milinskii, S. V. Baryshnikov, V. A. Parfenov, S. A. Kozlola, and N. H. Thuong, Tran. Electron. Electron. Mater. 19, 201 (2018).

    Article  Google Scholar 

  12. S. Ikeda, H. Kominami, K. Koyama, and Y. J. Wada, Appl. Phys. 62, 3339 (1987).

    Article  Google Scholar 

  13. W. L. Zhong, Y. G. Wang, P. L. Zhang, and B. D. Qu, Phys. Rev. B 50, 698 (1994).

    Article  ADS  Google Scholar 

  14. C. L. Wang, Y. Xin, X. S. Wang, and W. L. Zhong, Phys. Rev. B 62, 11423 (2000).

    Article  ADS  Google Scholar 

  15. A. V. Uskov, E. V. Charnaya, A. L. Pirozerskii, and A. S. Bugaev, Ferroelectrics 482, 70 (2015).

    Article  Google Scholar 

  16. D. Yadlovker and S. Berger, Phys. Rev. B 71, 184112 (2005).

    Article  ADS  Google Scholar 

  17. V. Fridkin and S. Ducharme, Ferroelectricity at the N-anoscale. Basics and Applications (Berlin, Springer, 2014).

    Book  Google Scholar 

  18. B. F. Borisov, E. V. Charnaya, and A. K. Radzhabov, Phys. Status Solidi B 181, 337 (1994).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-29-03004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Milinskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milinskiy, A.Y., Baryshnikov, S.V., Charnaya, E.V. et al. Effect of Nanoconfinement on the Kinetics of Phase Transitions in Organic Ferroelectric DIPAI. Phys. Solid State 62, 1199–1203 (2020). https://doi.org/10.1134/S1063783420070161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420070161

Keywords:

Navigation