Skip to main content
Log in

A Method for the Parametrization of the Pairwise Interatomic Potential

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Drawbacks of some methods known from the literature for determining four parameters of the Mie–Lennard-Jones pairwise interatomic potential as applied to crystals are pointed out. A new method for parametrization of the potential by thermoelastic properties of the crystal is proposed. The method determines the parameters by the best agreement of the calculated values with experimental data such as (1) the sublimation energy of the crystal at the zero values of the temperature (T = 0 K) and pressure (P = 0), (2) the thermal expansion coefficient and the isothermal modulus of elasticity measured at P = 0 and T = 300 K, and (3) the dependence of the isotherm curve T = 300 K of the equation of state on the volume P(300 K, V). The method was verified for iron and gold and showed good results. Further, the proposed method was applied to determine the parameters of the interatomic potential for refractory metals, viz., Nb, Ta, Mo, and W. The results obtained also allowed for more accurate determination of the sublimation energy, the Debye temperature, and the surface energy of the above metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Zhen and G. J. Davies, Phys. Status Solidi A 78, 595 (1983). https://doi.org/10.1002/pssa.2210780226

    Article  ADS  Google Scholar 

  2. M. N. Magomedov, High Temp. 44, 513 (2006). https://doi.org/10.1007/s10740-006-0064-5

  3. M. N. Magomedov, Tech. Phys. 60, 1619 (2015). https://doi.org/10.1134/S1063784215110195

    Article  Google Scholar 

  4. E. N. Akhmedov, J. Phys. Chem. Solids 121, 62 (2018). https://doi.org/10.1016/j.jpcs.2018.05.011

    Article  ADS  Google Scholar 

  5. N. Sh. Gazanova, Appl. Solid State Chem. 3, 36 (2018). https://doi.org/10.18572/2619-0141-2018-3-4-36-40

    Article  Google Scholar 

  6. S. P. Kraminin and E. N. Ahmedov, J. Phys. Chem. Solids 135, 109108 (2019). https://doi.org/10.1016/j.jpcs.2019.109108

    Article  Google Scholar 

  7. E. N. Ahmedov, J. Phys.: Conf. Ser. 1348, 012002 (2019). https://doi.org/10.1088/1742-6596/1348/1/012002

    Article  Google Scholar 

  8. E. A. Moelwyn-Hughes, Physical Chemistry (Pergamon, London, 1961).

    Google Scholar 

  9. M. N. Magomedov, Phys. Solid State 45, 32 (2003). https://doi.org/10.1134/1.1537405

    Article  ADS  Google Scholar 

  10. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1976).

    MATH  Google Scholar 

  11. M. M. Shukla and N. T. Padial, Rev. Brasil. Fis. 3, 39 (1973). http://sbfisica.org.br/bjp/download/v03/v03a03.pdf.

  12. J. K. D. Verma, and M. D. Aggarwal, J. Appl. Phys. 46, 2841 (1975). https://doi.org/10.1063/1.322028

    Article  ADS  Google Scholar 

  13. V. E. Zinov’ev, Thermophysical Properties of Metals at High Temperatures, The Handbook (Metallurgiya, Moscow, 1989) [in Russian].

    Google Scholar 

  14. Physical Quantities, The Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC, Boca Raton, FL, 1996).

  15. A. Karbasi, S. K. Saxena, and R. Hrubiak, CALPHAD 35, 72 (2011). https://doi.org/10.1016/j.calphad.2010.11.007

    Article  Google Scholar 

  16. P. D. Desai, J. Phys. Chem. Ref. Data 16, 91 (1987). https://doi.org/10.1063/1.555794

    Article  ADS  Google Scholar 

  17. X. Huang, F. Li, Q. Zhou, Y. Meng, K. D. Litasov, X. Wang, B. Liu, and T. Cui, Sci. Rep. 6, 19923 (2016). https://doi.org/10.1038/srep19923

    Article  ADS  Google Scholar 

  18. V. Yu. Bodryakov, High Temp. 53, 643 (2015). https://doi.org/10.1134/S0018151X15040069

    Article  Google Scholar 

  19. L. A. Girifalco, Statistical Physics of Materials (Wiley, New York, 1973).

    Google Scholar 

  20. M. N. Magomedov, Crystallogr. Rep. 62, 480 (2017). https://doi.org/10.1134/S1063774517030142

    Article  ADS  Google Scholar 

  21. http://www.chem.msu.su/cgi-bin/tkv.pl.

  22. Thermal Constants of Substances, Reference Book, Ed. by V. P. Glushko (VINITI, Moscow, 1965–1982), Nos. 1–10 [in Russian].

  23. D. K. Belashchenko and O. I. Ostrovskii, Russ. J. Phys. Chem. A 85, 967 (2011). https://doi.org/10.1134/S0036024411060094

    Article  Google Scholar 

  24. J.-B. Gu, C.-J. Wang, W.-X. Zhang, B. Sun, G.‑Q. Liu, D.-D. Liu, and X.-D. Yang, Chin. Phys. B 25, 126103 (2016). https://doi.org/10.1088/1674-1056/25/12/126103

    Article  ADS  Google Scholar 

  25. S. I. Novikova, Thermal Expansion of Solids (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  26. D. R. Wilburn and W. A. Bassett, Am. Mineral. 63, 591 (1978). https://pubs.geoscienceworld.org/msa/ammin/articleabstract/63/5-6/591/40926.

    Google Scholar 

  27. M. G. Pamato, I. G. Wood, D. P. Dobson, S. A. Hunt, and L. Voŏadlo, J. Appl. Crystallogr. 51, 470 (2018). https://doi.org/10.1107/S1600576718002248

    Article  Google Scholar 

  28. M. E. Straumanis and S. Zyszczynski, J. Appl. Crystallogr. 3, 1 (1970). https://doi.org/10.1107/s002188987000554x

    Article  Google Scholar 

  29. K. Wang and R. R. Reeber, Mater. Sci. Eng.: Rep. 23, 101 (1998). https://doi.org/10.1016/s0927-796x(98)00011-4

    Article  Google Scholar 

  30. V. Yu. Bodryakov, High Temp. 54, 316 (2016). https://doi.org/10.1134/S0018151X16030020

  31. V. Yu. Bodryakov, High Temp. 52, 840 (2014). https://doi.org/10.1134/S0018151X14040051

  32. Y. Shibazaki, K. Nishida, Y. Higo, M. Igarashi, M. Tahara, T. Sakamaki, H. Terasaki, Y. Shimoyama, S. Kuwabara, Y. Takubo, and E. Ohtani, Am. Mineral. 101, 1150 (2016). https://doi.org/10.2138/am-2016-5545

    Article  ADS  Google Scholar 

  33. M. N. Magomedov, The Study of Interatomic Interaction, Vacancy Formation and Self-Diffusion in Crystals (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  34. V. K. Kumikov and Kh. B. Khokonov, J. Appl. Phys. 54, 1346 (1983). https://doi.org/10.1063/1.332209

    Article  ADS  Google Scholar 

  35. Q. Jiang, H. M. Lu, and M. Zhao, J. Phys.: Condens. Matter 16, 521 (2004). https://doi.org/10.1088/0953-8984/16/4/001

    Article  ADS  Google Scholar 

  36. M. N. Magomedov, Tech. Phys. 55, 1382 (2010). https://doi.org/10.1134/S1063784210090240

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author expresses his gratitude to S.P. Kramynin, N.Sh. Gazanova, and Z.M. Surkhaeva for fruitful discussions and assistance during this study.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-29-11013_mk and Program no. 6 of the Presidium of the Russian Academy of Sciences, project no. 2-13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Magomedov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Lotova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magomedov, M.N. A Method for the Parametrization of the Pairwise Interatomic Potential. Phys. Solid State 62, 1126–1131 (2020). https://doi.org/10.1134/S1063783420070136

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420070136

Keywords:

Navigation