Skip to main content
Log in

The Influence of Various Divalent Metal Ions (Mn2+, Co2+, and Cu2+) Substitution on the Structural and Magnetic Properties of Nickel–Zinc Spinel Ferrite

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Ni0.7 – xZn0.3MxFe2O4 (M = Mn2+, Co2+, and Cu2+; x = 0, 0.1, 0.3, 0.5, and 0.7) spinel-type ferrite were fabricated through citrate technique. The X-ray diffraction analysis disclosed the creation of the cubic phase spinel structure in all prepared samples, except for the high concentration of Mn (x = 0.7). As the concentration of dopant ions increased, the structural parameters, such as lattice constant, particle size, X‑ray density, bulk density, and percentage porosity showed interesting changes. The experimental lattice parameter was found in the range from 0.839 to 0.843 nm for the three investigated series. The average particle size ranged from 52 to 107 nm. The density decreased with the addition of Mn and Co, while it improved considerably with the increment of Cu content. Besides, the percentage porosity for Ni–Zn–Cu ferrite was lower than those for the Ni–Zn–Mn and Ni–Zn–Co ferrite series. Several magnetic properties were studied at room temperature. Magnetization curves were measured in the range of magnetizing field up to 6000 A m–1. The magnetization was studied at a constant magnetic field (4500 A m–1) and it was found to rise with Mn2+ ions content up to x = 0.3 followed by a subsequent decline at x = 0.5. Furthermore, a monotonic decrease in the magnetization was observed by the incorporation of Co into Ni–Zn ferrite, while an increase was noticed for Cu-substituted samples. Among the three investigated series, the Ni–Zn–Cu ferrite series exhibited the highest magnetization, making it appropriate for high-density recording media. The initial permeability (μi) was studied as a function of temperature for all samples. The Curie temperature TC was estimated from the μi(T) plot and was determined to decrease with the upsurge in the content of substitute ions (Mn2+, Co2+, and Cu2+).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. M. Hashim, S. Alimuddin, S. E. Kumar, S. Ali, B. H. Koo, H. Chung, and R. Kumar, J. Alloys. Compd. 511, 107 (2012).

    Article  Google Scholar 

  2. A. M. M. Farea, S. Kumar, K. M. Batoo, A. Yousef, C. G. Lee, and S. Alimuddin, J. Alloys Compd. 469, 451 (2009).

    Article  Google Scholar 

  3. K. M. Batoo, S. Kumar, and C. G. Lee, J. Alloys Compd. 480, 596 (2009).

    Article  Google Scholar 

  4. D. Ravinder and K. Latha, Mater. Lett. 41, 247 (1999).

    Article  Google Scholar 

  5. J. Smit and H. P. J. Wijn, Ferrites (Philips Technical Library, Eindhoven, 1959), p. 73.

    Google Scholar 

  6. M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, A. Bozkurt, and M. S. Toprak, J. Alloys Compd. 486, 325 (2009).

    Article  Google Scholar 

  7. S. E. Shirsath, B. G. Toksha, R. H. Kadam, S. M. Patange, D. R. Mane, G. S. Jangam, and A. Ghasemi, J. Phys. Chem. Solids 71, 1669 (2010).

    Article  ADS  Google Scholar 

  8. B. P. Rao and K. H. Rao, J. Mater. Sci. 32, 6049 (1997).

    Article  ADS  Google Scholar 

  9. A. M. Wahba, N. A. Ali, and M. M. Eltabey, Mater. Chem. Phys. 146, 224 (2014).

    Article  Google Scholar 

  10. S. A. Mazen and N. I. Abu-Elsaad, J. Magn. Magn. Mater. 322, 265 (2010).

    Article  ADS  Google Scholar 

  11. S. A. Mazen, A. H. Wafik, and S. F. Mansour, J. Mater. Sci. 31, 2661 (1996).

    Article  ADS  Google Scholar 

  12. K. Pubby, S. S. Meena, S. M. Yusuf, and S. B. Narang, J. Magn. Magn. Mater. 466, 430 (2018).

    Article  ADS  Google Scholar 

  13. S. A. Mazen, M. H. Abdalla, R. L. Nakhla, H. M. Zaki, and F. Metawe, J. Mater. Chem. Phys. 34, 35 (1993).

    Article  Google Scholar 

  14. T. R. Tatarchuk, N. D. Paliychuk, M. Bououdina, B. Al-Najar, M. Pacia, W. Macyk, and A. Shyichuk, J. Alloys Compd. 731, 1256 (2018).

    Article  Google Scholar 

  15. B. D. Cullity, in Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1959), Vol. 99.

    Google Scholar 

  16. S. Torkian, A. Ghasemi, and R. S. Razavi, Ceram. Int. 43, 6987 (2017).

    Article  Google Scholar 

  17. A. Rais, K. Taibi, A. Addou, A. Zanoun, and Y. Al-Douri, Ceram. Int. 40, 14413 (2014).

    Article  Google Scholar 

  18. K. J. Standley, in Oxide Magnetic Materials (Clarendon, Oxford, 1972).

    Google Scholar 

  19. S. Sagadevan, I. Das, and J. Podder, R. T. Mater. Sci. Appl. 189, 145 (2017). https://doi.org/10.1007/978-3-319-44890-9_14

    Article  Google Scholar 

  20. A. C. F. M. Costa, E. Tortella, M. R. Morelli, and R. H. G. A. Kiminami, J. Magn. Magn. Mater. 256, 174 (2003).

    Article  ADS  Google Scholar 

  21. M. C. Dimri, A. Verma, S. C. Kashyap, D. C. Dube, O. P. Thakur, and C. Prakash, Mater. Sci. Eng. B 133, 42 (2006).

    Article  Google Scholar 

  22. E. Rezlescu, L. Sachelarie, P. D. Popa, and N. Rezlescu, IEEE Trans. Magn. 36, 3962 (2000).

    Article  ADS  Google Scholar 

  23. M. Li, X. Liu, T. Xu, Y. Nie, H. Li, and C. Zhang, J. Magn. Magn. Mater. 439, 228 (2017).

    Article  ADS  Google Scholar 

  24. S. Ghosh, P. Ayyub, N. Kumar, S. A. Khan, and D. Banerjee, Phys. Res. 77, 510 (2003).

    Google Scholar 

  25. S. A. Mazen and N. I. Abu-Elsaad, J. Magn. Magn. Mater. 324, 3366 (2012).

    Article  ADS  Google Scholar 

  26. A. P. G. Rodrigues, D. K. S. Gomes, J. H. Araujo, D. M. A. Melo, N. A. S. Oliveira, and R. M. Braga, J. Magn. Magn. Mater. 374, 748 (2015).

    Article  ADS  Google Scholar 

  27. A. V. Humbe, A. C. Nawle, A. B. Shinde, and K. M. Jadhav, J. Alloys Compd. 691, 343 (2017).

    Article  Google Scholar 

  28. A. M. Shaikh, S. C. Watawe, S. S. Bellad, S. A. Jadhav, and B. K. Chougule, Mater. Chem. Phys. 65, 46 (2000).

    Article  Google Scholar 

  29. A. Globus, in Proceedings of Cardiff Conference, USA,1975.

  30. R. Islam, M. A. Hakim, M. O. Rahman, H. N. Das, and M. A. Mamun, J. Alloys Compd. 559, 174 (2013).

    Article  Google Scholar 

  31. S. C. Watawe, B. D. Sarwade, S. S. Bellad, B. D. Sutar, and B. K. Chaugule, Mater. Chem. Phys. 65, 173 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mazen.

Ethics declarations

The authors confirm that they have conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazen, S., Abu-Elsaad, N.I. & Nawara, A.S. The Influence of Various Divalent Metal Ions (Mn2+, Co2+, and Cu2+) Substitution on the Structural and Magnetic Properties of Nickel–Zinc Spinel Ferrite. Phys. Solid State 62, 1183–1194 (2020). https://doi.org/10.1134/S106378342007015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378342007015X

Keywords:

Navigation