Skip to main content
Log in

Effect of Heat Treatment on the Formation of Copper Active Centers Obtained by the Interaction of Copper Chloride with H-Mordenite

  • IMPURITY CENTERS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of temperature conditions on the formation of copper active sites obtained by solid state ion exchange between copper chloride and H-mordenite zeolite using X-ray absorption spectroscopy in near-threshold (XANES) and extended (EXAFS) spectral regions behind the copper K-edge measured in in-situ conditions of the reaction at temperatures varying from room temperature to 400°C. The analysis of the spectra performed using direct calculations of CuK-XANES and taking into account anharmonic corrections for CuK-EXAFS fitting enables us to establish that there is no ion exchange up to 200°C and copper remains in the CuCl state. An increase in the temperature higher 200°C leads to the incorporation of copper atoms to the zeolite framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. V. Beznis, B. M. Weckhuysen, and J. H. Bitter, Catal. Lett. 138, 14 (2010).

    Article  Google Scholar 

  2. T. Sheppard, C. D. Hamill, A. Goguet, D. W. Rooney, and J. M. Thompson, Chem. Commun. 50, 11053 (2014).

    Article  Google Scholar 

  3. E. M. Alayon, M. Nachtegaal, M. Ranocchiari, and J. A. van Bokhoven, Chem. Commun. 48, 404 (2012).

    Article  Google Scholar 

  4. S. Grundner, M. A. C. Markovits, G. Li, M. Tromp, E. A. Pidko, E. J. M. Hensen, A. Jentys, M. Sanchez-Sanchez, and J. A. Lercher, Nat. Commun. 6, 7546 (2015).

    Article  ADS  Google Scholar 

  5. M. H. Mahyuddin, A. Staykov, Y. Shiota, and K. Yoshizawa, ACS Catal. 6, 8321 (2016).

    Article  Google Scholar 

  6. S. E. Bozbag, E. M. C. Alayon, J. Pecháček, M. Nachtegaal, M. Ranocchiari, and J. van Bokhoven, Catal. Sci. Technol. 6, 5011 (2016).

    Article  Google Scholar 

  7. E. M. C. Alayon, M. Nachtegaal, M. Ranocchiari, and J. A. van Bokhoven, Chim. Int. J. Chem. 66, 668 (2012).

    Article  Google Scholar 

  8. C. Lamberti, S. Bordiga, M. Salvalaggio, G. Spoto, A. Zecchina, F. Geobaldo, G. Vlaic, and M. Bellatreccia, J. Phys. Chem. B 101, 344 (1997).

    Article  Google Scholar 

  9. C. Lamberti, S. Bordiga, A. Zecchina, M. Salvalaggio, F. Geobaldo, and C. Otero Areán, J. Chem. Soc. Faraday Trans. 94, 1519 (1998).

    Article  Google Scholar 

  10. G. Spoto, A. Zecchina, S. Bordiga, G. Ricchiardi, G. Martra, G. Leofanti, and G. Petrini, Appl. Catal. B 3, 151 (1994).

    Article  Google Scholar 

  11. J. A. van Bokhoven, and C. Lamberti, X-Ray Absorption and X-Ray Emission Spectroscopy: Theory and Applications (Wiley, Hoboken, NJ, 2015).

    Google Scholar 

  12. S. E. Bozbag, E. M. C. Alayon, J. Pecháček, M. Nachtegaal, M. Ranocchiari, and J. A. van Bokhoven, Catal. Sci. Technol. 6, 5011 (2016).

    Article  Google Scholar 

  13. P. M. Abdala, O. V. Safonova, G. Wiker, W. van Beek, H. Emerich, J. A. van Bokhoven, J. Sá, J. Szlachetko, and M. Nachtegaal, Chim. Int. J. Chem. 66, 699 (2012).

    Article  Google Scholar 

  14. M. Newville, J. Synchrotr. Rad. 8, 322 (2001).

    Google Scholar 

  15. B. Ravel and M. Newville, J. Synchrotr. Rad. 12, 537 (2005).

    Google Scholar 

  16. Y. Joly, Phys. Rev. B 63, 125120 (2001).

    Article  ADS  Google Scholar 

  17. M. Vaccari, R. Grisenti, P. Fornasini, F. Rocca, and A. Sanson, Phys. Rev. B 75, 184307 (2007).

    Article  ADS  Google Scholar 

  18. R. W. G. Wyckoff, Crystal Structures (Wiley, New York, 1963).

    MATH  Google Scholar 

  19. D. S. Yang and S. K. Joo, Solid State Commun. 105, 595 (1998).

    Article  ADS  Google Scholar 

  20. N. Van Hung, N. Ba Duc, and R. R. Frahm, J. Phys. Soc. Jpn. 72, 1254 (2003).

    Article  ADS  Google Scholar 

  21. J. M. Tranquada and R. Ingalls, Phys. Rev. B 28, 3520 (1983).

    Article  ADS  Google Scholar 

  22. P. Fornasini, F. Monti, and A. Sanson, J. Synchrotr. Rad. 8, 1214 (2001).

    Google Scholar 

  23. L. A. Bugaev, P. Ildefonse, A. M. Flank, A. P. Sokolenko, and H. V. Dmitrienko, J. Phys.: Condens. Matter 12, 1119 (2000).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Prof. J. van Bokhoven for the participation in this work.

Funding

This work was supported by the Russian Scientific Foundation, project no. 18-72-00096 “Changes in the atomic and electronic structures of active copper centers in Cu-zeolites and their catalytic activity during reactions of oxidation of methane to methanol.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Srabionyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srabionyan, V.V., Sukharina, G.B., Kaptelinin, S.Y. et al. Effect of Heat Treatment on the Formation of Copper Active Centers Obtained by the Interaction of Copper Chloride with H-Mordenite. Phys. Solid State 62, 1222–1227 (2020). https://doi.org/10.1134/S1063783420070252

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420070252

Keywords:

Navigation